SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaillardet Jérôme) "

Sökning: WFRF:(Gaillardet Jérôme)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolou-Bi, Bolou Emile, et al. (författare)
  • Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden)
  • 2022
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • The knowledge of the sources of base cations in stream water is a prerequisite to assess potential effects of changing environmental conditions such as changing rainfall, weathering or groundwater flows on cation export with stream water. This study use stable Mg isotopes to identify potential sources in the well-studied catchment of Krycklan located on gneissic bedrock covered by quaternary sediments in Sweden. Samples were collected from open filed rain, throughfall, stream, soil, rock and litterfall. The delta Mg-26 values of these samples was determined and the contributions of different sources to Mg fluxes in the stream were determined from the variation of the Mg isotope and Sr / Mg ratios. The results show an overall variation of 1.10 parts per thousand between all samples. In addition, Magnesium isotope ratios varied little in the streamwater and in soil solution, except during snowmelt periods during which a large portion of the annual runoff occurs. Magnesium in the streamwater is explained as a mixture of three pools (open field rain, soil solution and groundwater) with the latter two influenced by catchment processes. Outside the snow-melt period, Mg in streamwater mainly derived from the groundwater, assumed to be mineral weathering signature in this catchment, with a contribution ranging from 12 to 63% to Mg fluxes. Open field rain dominates Mg fluxes in streamwater during spring flood (0 to 78%) and may contribute significantly during larger summer and autumn rainfall events. Soil solution input to streamwater range from 16 to 59% of Mg fluxes in streamwater. Our results demonstrate that delta Mg-26 values together with Mg concentrations and Sr/Mg ratios can be used to constrain the Mg sources of stream water and quantify weathering release rates.
  •  
2.
  • Gonfiantini, Roberto, et al. (författare)
  • Intercomparison of Boron Isotope and Concentration Measurements. Part II: Evaluation of Results
  • 2005
  • Ingår i: Geostandards Newsletter. - 0150-5505. ; 27:1, s. 41-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The Istituto di Geoscienze e Georisorse (IGG), on behalf and with the support of the International Atomic Energy Agency (IAEA), prepared eight geological materials (three natural waters and five rocks and minerals), intended for a blind interlaboratory comparison of measurements of boron isotopic composition and concentration. The materials were distributed to twenty seven laboratories - virtually all those performing geochemical boron isotope analyses in the world - which agreed to participate in the intercomparison exercise. Only fifteen laboratories, however, ultimately submitted the isotopic and/or concentration results they obtained on the intercomparison materials. The results demonstrate that interlaboratory reproducibility is not well reflected by the precision values reported by the individual laboratories and this observation holds true for both boron concentration and isotopic composition. The reasons for the discrepancies include fractionations due to the chemical matrix of materials, relative shift of the zero position on the δ11 B scale and a lack of well characterized materials for calibrating absolute boron content measurements. The intercomparison materials are now available at the IAEA (solid materials) and IGG (waters) for future distribution.
  •  
3.
  • Hilton, Robert G., et al. (författare)
  • Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7563, s. 84-U162
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere(1-3). Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release(4-6). However, some of this soil organic carbon may be eroded and transferred to rivers(7-9). If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink(8-10). Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean(11,12), and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC10,13,14. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 +/- 800 years, much older than the POC in large tropical rivers(13,14). From the measured biospheric POC content and variability in annual sediment yield(15), we calculate a biospheric POC flux of 2.2(-0.9)(+1.3) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin(16). Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy