SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(German J. Bruce) srt2:(2015-2019)"

Sökning: WFRF:(German J. Bruce) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berthelot, Claire C, et al. (författare)
  • Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation
  • 2015
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs). Methods: Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR). Results: Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E-2 (PGE(2))/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated. Conclusions: The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in response to omega-3 supplementation varied among healthy individuals, and were associated with changes in plasma FA and oxylipin composition to different degrees in different individuals.
  •  
3.
  • Bever, Candace S., et al. (författare)
  • Effects of triclosan in breast milk on the infant fecal microbiome
  • 2018
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 203, s. 467-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Triclosan is frequently used for its antimicrobial properties and has been detected in human serum, urine, and breast milk. Animal and molecular studies have shown that triclosan exerts a wide range of adverse health effects at both high (ppm) and low (ppb) concentrations. Since triclosan is of growing concern to human and environmental health, there is a need to improve extraction procedures and to study additional effects from triclosan exposure. In this study, we have improved triclosan extraction from breast milk by using salt (MgSO4) to reduce emulsion formation and increase water polarity and water (similar to 80%) to enhance the overall extraction efficiency (similar to 3.5 fold). This extraction method was applied to breast milk samples collected from donors who i) recorded their use of triclosan-containing personal care products and ii) provided matching infant stool samples. Of the participants who had detectable amounts of triclosan in their breast milk, nine (75%) of them reported daily use of triclosan-containing personal care products. Levels of triclosan in breast milk were compared to the donor's infant's fecal microbiome. We found that the bacterial diversity in the fecal microbiome of the infants exposed to breast milk with detectable triclosan levels differed compared to their peers exposed to milk containing non-detectable amounts. This finding implies that exogenous chemicals are impacting microbiome diversity.
  •  
4.
  • Smith, Caren E., et al. (författare)
  • Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent
  • 2018
  • Ingår i: Molecular Nutrition & Food Research. - : Wiley. - 1613-4125. ; 62:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results: A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction <10−7), and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 × 10−8) such that each serving of low-fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy