SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grasso D.) srt2:(2010-2014)"

Sökning: WFRF:(Grasso D.) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackermann, M., et al. (författare)
  • Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV
  • 2010
  • Ingår i: PHYSICAL REVIEW D. - 1550-7998. ; 82:9, s. 092004-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of our analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law proportional to E-3.08+/-0.05 with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.
  •  
2.
  • Ackermann, M., et al. (författare)
  • Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope
  • 2010
  • Ingår i: PHYS REV D. - 1550-7998. ; 82:9, s. 092003-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 x 10(6) cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from similar to 10 degrees up to 90 degrees, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from similar to 0.5% to similar to 10%.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • De Bruyn, D., et al. (författare)
  • Main achievements of the FP7-LEADER collaborative project of the european commission regarding the design of a lead-cooled fast reactor
  • 2013
  • Ingår i: International Congress on Advances in Nuclear Power Plants, ICAPP 2013. - 9781632660381 ; , s. 281-290
  • Konferensbidrag (refereegranskat)abstract
    • Concerns over energy resource availability, climate change, air quality, and energy security suggest an important role for nuclear power in future energy supplies. While the current Generation II and III nuclear power plant designs provide an economically and publicly acceptable electricity supply in many markets, further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. To explore these opportunities, worldwide governments, industries, and research centres started a wide-ranging discussion on the development of new systems known as "Generation IV." The European Commission has organized the Sustainable Nuclear Energy Technology Platform that through its Strategic Research Agenda promoted the development of fast reactors with closed fuel cycle. Among the promising reactor technologies, the Lead Fast Reactor (LFR) has been identified as a technology with great potential to meet needs for both remote sites and central power stations. The LFR system features a fast-neutron spectrum allowing the possibility for a closed fuel cycle for efficient conversion of fertile uranium and management of actinides. A full actinide recycle fuel cycle is therefore envisioned for the design of the reference LFR meant for deployment, while the capabilities of the system to act as a net-burner of actinides from spent fuel are object of further investigation The LEADER project deals with the development of such a technology through two main goals: the conceptual design of an industrial-size LFR (the so-called European LFRor ELFR) and the conceptual design of a scaled down facility, the demonstration reactor called ALFRED (Advanced Lead Fast Reactor European Demonstrator). The European Commission, withinits seventh framework programme, has approved the proposal submitted by 16 partners comprising research centres, industrial partners and universities. The project has started in April 2010 for a duration of three years.The focus of the first part of the LEADER project was the resolution of the key issues of the previous sixth framework programme ELSY project in order to reach a new consistent industrial-size reactor ELFR configuration.With reference to this reactor configuration the design of the ALFRED demonstrator (sized at 300 MWth, about 120 MWe) has been performed. The development of such demonstrator reactor presents obviously strong and interesting synergies with the development of MYRRHA, a material and fuel testing facility proposed by the SCK·CEN research centre in Belgium. In this paper we present a synthesis of the main results of the LEADER project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy