SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Greenwald M.) srt2:(2020-2023)"

Search: WFRF:(Greenwald M.) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Olsson, MIT, et al. (author)
  • Gender Gap in Parental Leave Intentions : Evidence from 37 Countries
  • 2023
  • In: Political Psychology. - : Wiley-Blackwell Publishing Ltd. - 0162-895X .- 1467-9221. ; 44:6, s. 1163-1192
  • Journal article (peer-reviewed)abstract
    • Despite global commitments and efforts, a gender-based division of paid and unpaid work persists. To identify how psychological factors, national policies, and the broader sociocultural context contribute to this inequality, we assessed parental-leave intentions in young adults (18–30 years old) planning to have children (N = 13,942; 8,880 identified as women; 5,062 identified as men) across 37 countries that varied in parental-leave policies and societal gender equality. In all countries, women intended to take longer leave than men. National parental-leave policies and women's political representation partially explained cross-national variations in the gender gap. Gender gaps in leave intentions were paradoxically larger in countries with more gender-egalitarian parental-leave policies (i.e., longer leave available to both fathers and mothers). Interestingly, this cross-national variation in the gender gap was driven by cross-national variations in women's (rather than men's) leave intentions. Financially generous leave and gender-egalitarian policies (linked to men's higher uptake in prior research) were not associated with leave intentions in men. Rather, men's leave intentions were related to their individual gender attitudes. Leave intentions were inversely related to career ambitions. The potential for existing policies to foster gender equality in paid and unpaid work is discussed.
  •  
3.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
4.
  •  
5.
  • Creely, A. J., et al. (author)
  • Overview of the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
  •  
6.
  •  
7.
  •  
8.
  • Sweeney, R., et al. (author)
  • MHD stability and disruptions in the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • SPARC is being designed to operate with a normalized beta of beta(N) = 1.0, a normalized density of n(G) = 0.37 and a safety factor of q(95) approximate to 3.4, providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal beta(p) = 0.19 at the safety factor q = 2 surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of similar to 80 %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order 10(-2) that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view