SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gremel Gabriela) srt2:(2015)"

Sökning: WFRF:(Gremel Gabriela) > (2015)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gremel, Gabriela, et al. (författare)
  • A prognosis based classification of undifferentiated uterine sarcomas : Identification of mitotic index, hormone receptors and YWHAE-FAM22 translocation status as predictors of survival
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 136:7, s. 1608-1618
  • Tidskriftsartikel (refereegranskat)abstract
    • Undifferentiated uterine sarcomas (UUS) are rare tumors with a heterologous biology and a poor prognosis. The goal of this study was to examine clinicopathology, biomarkers and YWHAE-FAM22 translocation status, in the prognosis of these tumors. Twenty-six cases of UUS were included. All original slides were rereviewed and age at diagnosis, tumor stage, Kurihara diagnosis, mitotic index, presence of necrosis and grade of nuclear atypia were recorded. Additionally, a tissue microarray was constructed from 22 of the cases, and the protein biomarkers P53, P16, Ki-67, Cyclin-D1, ER, PR and ANLN were evaluated by immunohistochemistry. All tumors were evaluated for the presence of a YWHAE-FAM translocation; the translocation was demonstrated in the three Cyclin-D1 positive tumors. Follow-up data in the form of overall survival were available on all patients. These tumors could be divided into two prognostic groups, a high mitotic index group (10 cases, M=36.8, SD=5.4) and a low mitotic index group (16 cases, M=8.7, SD=5.8). These two groups showed a statistically significant difference in prognosis. The expression of ER, PR or presence of the YWHAE-FAM22 translocation correlated with low mitotic index and an additionally improved prognosis, although the number of cases was small. These results indicate that UUS can be divided into two prognostic groups using mitotic index as a primary criteria, followed by expression of either ER, PR or the presence of a YWHAE-FAM22 translocation as a secondary criteria. This study demonstrates the presence of statistically significant prognostic subgroups within UUS, and provides treatment insights.
  •  
2.
  • Gremel, Gabriela, et al. (författare)
  • The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling
  • 2015
  • Ingår i: Journal of gastroenterology. - : Springer. - 0944-1174 .- 1435-5922. ; 50:1, s. 46-57
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The gastrointestinal tract (GIT) is subdivided into different anatomical organs with many shared functions and characteristics, but also distinct differences. We have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to describe the gene and protein expression patterns that define the human GIT. METHODS: RNA sequencing data derived from stomach, duodenum, jejunum/ileum and colon specimens were compared to gene expression levels in 23 other normal human tissues analysed with the same method. Protein profiling based on immunohistochemistry and tissue microarrays was used to sub-localize the corresponding proteins with GIT-specific expression into sub-cellular compartments and cell types. RESULTS: Approximately 75% of all human protein-coding genes were expressed in at least one of the GIT tissues. Only 51 genes showed enriched expression in either one of the GIT tissues and an additional 83 genes were enriched in two or more GIT tissues. The list of GIT-enriched genes with validated protein expression patterns included various well-known but also previously uncharacterised or poorly studied genes. For instance, the colon-enriched expression of NXPE family member 1 (NXPE1) was established, while NLR family, pyrin domain-containing 6 (NLRP6) expression was primarily found in the human small intestine. CONCLUSIONS: We have applied a genome-wide analysis based on transcriptomics and antibody-based protein profiling to identify genes that are expressed in a specific manner within the human GIT. These genes and proteins constitute important starting points for an improved understanding of the normal function and the different states of disease associated with the GIT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy