SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hotchkiss Erin R.) srt2:(2015-2019)"

Sökning: WFRF:(Hotchkiss Erin R.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burrows, Ryan, et al. (författare)
  • Nitrogen limitation of heterotrophic biofilms in boreal streams
  • 2015
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 60:7, s. 1237-1251
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient limitation of the biofilm is fundamental to stream ecosystem processes, as microbial activity shapes the biological availability and biogeochemical cycling of carbon and nutrients. We used nutrient-diffusing substrata (NDS) to investigate heterotrophic nutrient limitation of microbial respiration (MR) across 20 streams draining boreal landscapes in northern Sweden. We also explored variation in microbial biomass and community structure of biofilms that developed on NDS using phospholipid fatty acid (PLFA) biomarkers. Limitation was determined as a significant response of MR and biomass production on cellulose surfaces to enrichment with nitrogen (N), phosphorus (P) or N+P, relative to controls. Microbial respiration was N-limited, with an average 3.3-fold increase on N-amended NDS. Nitrogen limitation decreased, and control rates of MR increased, with greater background concentrations of inorganic N across the sites. In contrast to MR, microbial biomass was primarily N-limited but was greatest for the N+P NDS. Accordingly, differences in respiratory versus biomass responses to nutrient addition resulted in significantly greater biomass-specific MR on N-amended NDS compared to all other treatments. In addition, PLFA biomarkers indicated distinct microbial communities on N and N+P NDS compared to controls and/or P NDS. Greater MR and biomass, and the development of distinct microbial communities, when supplied with inorganic N suggest that factors which alter aquatic N loading during autumn may have important implications for ecosystem processes and the biogeochemistry of boreal streams and rivers. Our findings add to a growing body of evidence that the productivity of Fennoscandian boreal landscapes is constrained by N availability.
  •  
2.
  • Creed, Irena F., et al. (författare)
  • Global change-driven effects on dissolved organic matter composition : Implications for food webs of northern lakes
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:8, s. 3692-3714
  • Forskningsöversikt (refereegranskat)abstract
    • Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
  •  
3.
  • Hamdan, Mohammed, et al. (författare)
  • Carbon dioxide stimulates lake primary production
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is a fundamental ecosystem process that sequesters carbon dioxide (CO2) and forms the resource base for higher trophic levels. Still, the relative contribution of different controls on GPP at the whole-ecosystem scale is far from resolved. Here we show, by manipulating CO2 concentrations in large-scale experimental pond ecosystems, that CO2 availability is a key driver of whole-ecosystem GPP. This result suggests we need to reformulate past conceptual models describing controls of lake ecosystem productivity and include our findings when developing models used to predict future lake ecosystem responses to environmental change.
  •  
4.
  • Hotchkiss, Erin R., et al. (författare)
  • Whole-stream 13C tracer addition reveals distinct fates of newly fixed carbon
  • 2015
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 96:2, s. 403-416
  • Tidskriftsartikel (refereegranskat)abstract
    • Many estimates of freshwater carbon (C) fluxes focus on inputs, processing, and storage of terrestrial C; yet inland waters have high rates of internally fixed (autochthonous) C production. Some fraction of newly fixed C may be released as biologically available, dissolved organic C (DOC) and stimulate microbial-driven biogeochemical cycles soon after fixation, but the fate of autochthonous C is difficult to measure directly. Tracing newly fixed C can increase our understanding of fluxes and fate of autochthonous C in the context of freshwater food webs and C cycling. We traced autochthonous C fixation and fate using a dissolved inorganic C stable isotope addition (13CDIC). We added 13CDIC to North Fork French Creek, Wyoming, USA during two days in August. We monitored changes in 13C pools, fluxes, and storage for 44 d after the addition. Two-compartment flux models were used to quantify net release of newly fixed 13CDOC and 13CDIC into the water column. We compared net 13C fixation with tracer 13CDIC removal and gross primary production (GPP) to account for the mass of tracer fixed, released, lost to the atmosphere, and exported downstream. Much of the fixed C turned over rapidly and did not enter longer-term storage pools. Net C fixed was 70% of GPP measured with O2. Algae likely released the remaining 30% via 13CDOC exudation and respiration of newly fixed C. Primary producers released 13CDOC at rates of up to 16% per day during the 13C addition, but exudation of new labile C declined to near zero by day 6. DIC production from newly fixed C accounted for 21% of ecosystem respiration the day after the 13C addition. All measured organic C (OC) pools were enriched with 13C 1 d after the tracer addition. 20% of fixed 13C remained in benthic OC by day 44, and average residence time of autochthonous C in benthic OC was 62 d. Newly fixed C had two distinct fates: short-term (<1 week) exudation and respiration or longer-term storage and downstream export. Autochthonous C in streams likely fuels short-term microbial production and biogeochemical cycling, in addition to providing a longer-term resource for consumers.
  •  
5.
  • Jonsson, Micael, et al. (författare)
  • Climate change modifies the size structure of assemblages of emerging aquatic insects
  • 2015
  • Ingår i: Freshwater Biology. - : Wiley-Blackwell. - 0046-5070 .- 1365-2427. ; 60:1, s. 78-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to not only raise water temperatures, but also to cause brownification of aquatic ecosystems via increased inputs of terrestrial dissolved organic matter. While efforts have been made to understand how increased temperature and brownification separately influence aquatic food webs, their interactive effects have been less investigated. Further, although climate change effects on aquatic ecosystems likely will propagate to terrestrial consumers via changes in aquatic insect emergence, this has rarely been studied. We investigated the effect of climate change on aquatic insect emergence, in a large-scale outdoor pond facility where 16 sections - each containing natural food webs including a fish top-consumer population - were subjected to warming (3 degrees C above ambient temperatures) and/or brownification (by adding naturally humic stream water). Aquatic insect emergence was measured biweekly over 18weeks. We found no effect of warming or brownification on total emergent insect dry mass. However, warming significantly reduced the number of emergent Chironomidae, while numbers of larger taxa, Trichoptera and Ephemeroptera, remained unchanged. On average, 57% and 58% fewer Chironomidae emerged from the warmed clear and humic pond sections, respectively. This substantial decrease in emergent Chironomidae resulted in a changed community structure and on average larger individuals emerging from warm sections as well as from humic sections under ambient conditions. There was also a weak influence of fish biomass on the size structure of emergent aquatic insects, with a positive relationship between individual insect size and total fish biomass, but effects of fish were clearly subordinate to those of warming. Climate change impacts on aquatic systems can have widespread consequences also for terrestrial systems, as aquatic insects are ubiquitous and their emergence represents an important resource flow from aquatic to terrestrial environments. While we found that neither warming nor brownification quantitatively changed total aquatic insect emergence biomass, the warming-induced decrease in number of emergent Chironomidae and the subsequent increase in average body size will likely impact terrestrial consumers relying on emergent aquatic insect as prey.
  •  
6.
  • Klaus, Marcus, et al. (författare)
  • Listening to air–water gas exchange in running waters
  • 2019
  • Ingår i: Limnology and Oceanography. - : Association for the Sciences of Limnology and Oceanography. - 1541-5856. ; 17:7, s. 395-414
  • Tidskriftsartikel (refereegranskat)abstract
    • Air–water gas exchange velocities (k) are critical components of many biogeochemical and ecological process studies in aquatic systems. However, their high spatiotemporal variability is difficult to capture with traditional methods, especially in turbulent flow. Here, we investigate the potential of sound spectral analysis to infer k in running waters, based on the rationale that both turbulence and entrained bubbles drive gas exchange and cause a characteristic sound. We explored the relationship between k and sound spectral properties using laboratory experiments and field observations under a wide range of turbulence and bubble conditions. We estimated k using flux chamber measurements of CO2 exchange and recorded sound above and below the water surface by microphones and hydrophones, respectively. We found a strong influence of turbulence and bubbles on sound pressure levels (SPLs) at octave bands of 31.5 Hz and 1000 Hz, respectively. The difference in SPLs at these bands and background noise bands showed a linear correlation with k both in the laboratory (R2 = 0.93–0.99) and in the field (median R2 = 0.42–0.90). Underwater sound indices outperformed aerial sound indices in general, and indices based on hydraulic parameters in particular, in turbulent and bubbly surface flow. The results highlight the unique potential of acoustic techniques to predict k, isolate mechanisms, and improve the spatiotemporal coverage of k estimates in bubbly flow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy