SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hotchkiss Erin R.) srt2:(2020-2021)"

Sökning: WFRF:(Hotchkiss Erin R.) > (2020-2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gómez-Gener, Lluís, et al. (författare)
  • Integrating Discharge-Concentration Dynamics Across Carbon Forms in a Boreal Landscape
  • 2021
  • Ingår i: Water resources research. - : John Wiley & Sons. - 0043-1397 .- 1944-7973. ; 57:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The flux of terrestrial carbon across land-water boundaries influences the overall carbon balance of landscapes and the ecology and biogeochemistry of aquatic ecosystems. The local consequences and broader fate of carbon delivered to streams is determined by the overall composition of carbon inputs, including the balance of organic and inorganic forms. Yet, our understanding of how hydrologic fluxes across different land-water interfaces regulate carbon supply remains poor. We used 7 years of data from three boreal catchments to test how different land-water interfaces (i.e., forest, wetland, and lake) modulate concentration-discharge (C-Q) relationships for dissolved organic carbon (DOC), carbon dioxide (CO2), and methane, as well as the balance among forms (e.g., DOC:CO2). Seasonal patterns in concentrations and C-Q relationships for individual carbon forms differed across catchments. DOC varied between chemostasis and transport limitation in the forest catchment, between supply limitation and chemostasis in the wetland catchment, and was persistently chemostatic in the lake outlet stream. Carbon gases were supply limited overall, but exhibited chemostasis or transport limitation in the forest and wetland catchments linked to elevated flow in summer and autumn. Unique C-Q relationships for individual forms reflected the properties of different interfaces and underpinned changes in the composition of lateral carbon supply. Accordingly, DOC dominated the carbon flux during snowmelt, whereas gas evasion increased in relative importance during other times of the year. Integrating the C-Q dynamics of individual carbon forms provides insight into the shifting composition of lateral export, and thus helps to predict how hydrologic changes may alter the fate of carbon supplied to streams.
  •  
2.
  • Hamdan, Mohammed, et al. (författare)
  • An experimental test of climate change effects in northern lakes : Increasing allochthonous organic matter and warming alters autumn primary production
  • 2021
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 66:5, s. 815-825
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate changes are predicted to influence gross primary production (GPP) of lakes directly through warming and indirectly through increased loads of allochthonous coloured dissolved organic matter (cDOM) from surrounding landscapes. However, few studies have investigated this combined effect.Here we tested the effects of warming (elevated 3celcius) and cDOM input (three levels of humic river water addition) on GPP in autumn (2 months including open water and ice-covered periods) in experimental pond ecosystems.The cDOM input decreased whole-ecosystem GPP at natural temperature conditions mainly as a result of lower benthic GPP not fully counteracted by an increase in pelagic GPP, while warming increased whole-ecosystem GPP due to a positive response of mainly pelagic GPP at all levels of cDOM input.Warming delayed autumn ice cover formation by 2 weeks but did not affect light availability in the water column compared to ambient ice-covered treatments. Gross primary production during this period was still affected by warming and cDOM.The results stress the importance of accounting for multiple climate drivers and habitats when predicting lake GPP responses to climate change. We conclude that climate change may shift whole-ecosystem GPP through different responses of habitat-specific GPP to increasing cDOM inputs and warming.
  •  
3.
  • Hamdan, Mohammed, 1978- (författare)
  • Effects of temperature and terrestrial carbon on primary production in lake ecosystems
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate warming is predicted to affect northern lake food webs in two ways: (1)directly via changes in water temperature and ice conditions, and (2) indirectlyvia changes in catchment characteristics and processes that influence input ofallochthonous coloured dissolved organic matter (cDOM) and nutrients. Input ofcDOM increases carbon dioxide (CO2) availability, causes brownification andreduced light conditions, and may increase nutrient availability especially forpelagic primary producers. Increased water temperature and light penetrationand longer ice-free periods affect metabolic rates. These changes are expected toinfluence gross primary production (GPP) and growth of higher trophic levels.However, majority of studies focus on pelagic processes and net effects at wholelake scale is not well understood. Consequently, the lack of knowledge of whatfactors control benthic GPP makes predictions of net effects of climate change onwhole-ecosystem GPP spurious. The aim of this thesis was to experimentally testeffects of warming and increased input of allochthonous cDOM on habitatspecific and whole-ecosystem GPP in lakes. First, by manipulating the CO2concentrations in large scale pond ecosystems, we showed that increased CO2stimulated whole-ecosystem GPP. In a separate incubation study with naturallake sediments in a boreal lake, we tested the role of CO2 as a limiting factor forbenthic GPP under different light levels. The results showed that CO2 supplystimulated benthic GPP at high but not at low light availability, suggesting thatbenthic GPP can be CO2-limited. In the same experimental pond ecosystems, thecombined effect of increased allochthonous cDOM and warming (+3.5°C) on GPPwas studied. The results showed that cDOM input decreases whole-ecosystemGPP, mainly as a result of decreased benthic GPP due to light limitation not fullycounteracted by an increase in pelagic GPP under ambient conditions. Warmingon the other caused a hump shaped increase in whole-ecosystem GPP withincreasing cDOM input mainly due to a positive response in pelagic GPP due torelaxed nutrient limitation. Finally, by manipulating the fish consumer biomassin the same experimental pond ecosystems we showed that whole-ecosystem GPPcan be controlled by top-down effects under warm (+ 3.0°C) but not ambienttemperature conditions. The decline in whole-ecosystem GPP was mainlyattributed to a warming-stimulated consumer-driven trophic cascade in thepelagic habitat and top-down control by zooplankton on phytoplankton growth,while no corresponding cascade was evident in the benthic habitat.Taken together, the results suggest that climate change impacts, as increasinginputs of cDOM, warming and changes in food webs, have different effects onhabitat specific GPP and alone or in combination have impacts on whole-lakeGPP. This thesis offers important insights to better understand the factors thatcontrol lake GPP and to predict future lake ecosystem responses to environmentalchange.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy