SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Impellizzeri C. M. V.) srt2:(2024)"

Sökning: WFRF:(Impellizzeri C. M. V.) > (2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
2.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
3.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A∗ Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In a companion paper, we present the first spatially resolved polarized image of Sagittarius A∗ on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%-28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87∗, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A∗ (equivalent to ≈ 46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
  •  
4.
  • Lankhaar, Boy, 1991, et al. (författare)
  • Maser polarization through anisotropic pumping
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Polarized emission from masers is an excellent tool to study magnetic fields in maser sources. The linear polarization of the majority of masers is understood as an interplay of maser saturation and anisotropic pumping. However, for the latter mechanism, no quantitative modeling has been presented yet. Aims. We aim to construct a comprehensive model of maser polarization, including quantitative modeling of both anisotropic pumping and the effects of maser saturation on the polarization of masers. Methods. We extended regular (isotropic) maser excitation modeling with a dimension that describes the molecular population alignments, as well as including the linear polarization dimension to the radiative transfer. The results of the excitation analysis yielded the anisotropic pumping and decay parameters, which were subsequently used in one-dimensional proper maser polarization radiative transfer modeling. Results. We present the anisotropic pumping parameters for a variety of transitions from class I CH3OH masers, H2O masers, and SiO masers. SiO masers are highly anisotropically pumped due to them occurring in the vicinity of a late-type star, which irradiates the maser region with a strong directional radiation field. Class I CH3OH masers and H2O masers occur in association with shocks, and they are modestly anisotropically pumped due to the anisotropy of the excitation region. Conclusions. Our modeling constitutes the first quantitative constraints on the anisotropic pumping of masers. We find that anisotropic pumping can explain the high polarization yields of SiO masers, as well as the modest polarization of unsaturated class I CH3OH masers. The common 22 GHz H2O maser has a relatively weak anisotropic pumping; in contrast, we predict that the 183 GHz H2O maser is strongly anisotropically pumped. Finally, we outline a mechanism through which non-Zeeman circular polarization is produced, when the magnetic field changes direction along the propagation through an anisotropically pumped maser.
  •  
5.
  • Quinatoa, Daysi, et al. (författare)
  • The first ground-based detection of the 752 GHz water line in local ultraluminous infrared galaxies using APEX-SEPIA
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6321-6331
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first ground-based detection of the water line p-H2O (211-202) at 752.033 GHz in three z < 0.08 ultraluminous infrared galaxies (ULIRGs): IRAS 06035-7102, IRAS 17207-0014, and IRAS 09022-3615. Using the Atacama Pathfinder EXperiment (APEX), with its Swedish-ESO PI Instrument for APEX (SEPIA) band-9 receiver, we detect this H2O line with overall signal-to-noise ratios of 8-10 in all three galaxies. Notably, this is the first detection of this line in IRAS 06035-7102. Our new APEX-measured fluxes, between 145 and 705 Jy km s-1, are compared with previous values taken from Herschel SPIRE FTS. We highlight the great capabilities of APEX for resolving the H2O line profiles with high spectral resolutions while also improving by a factor of two the significance of the detection within moderate integration times. While exploring the correlation between the p-H2O(211-202) and the total infrared luminosity, our galaxies are found to follow the trend at the bright end of the local ULIRG's distribution. The p-H2O(211-202) line spectra are compared to the mid-J CO and HCN spectra, and dust continuum previously observed with ALMA. In the complex interacting system IRAS 09022-3615, the profile of the water emission line is offset in velocity with respect to the ALMA CO(J = 4-3) emission. For IRAS 17207-0014 and IRAS 06035-7102, the profiles between the water line and the CO lines are spectroscopically aligned. This pilot study demonstrates the feasibility of directly conducting ground-based high-frequency observations of this key water line, opening the possibility of detailed follow-up campaigns to tackle its nature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy