SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ji Boyang 1983) srt2:(2021)"

Sökning: WFRF:(Ji Boyang 1983) > (2021)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Gang, 1991, et al. (författare)
  • Performance of Regression Models as a Function of Experiment Noise
  • 2021
  • Ingår i: Bioinformatics and Biology Insights. - : SAGE Publications. - 1177-9322. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A challenge in developing machine learning regression models is that it is difficult to know whether maximal performance has been reached on the test dataset, or whether further model improvement is possible. In biology, this problem is particularly pronounced as sample labels (response variables) are typically obtained through experiments and therefore have experiment noise associated with them. Such label noise puts a fundamental limit to the metrics of performance attainable by regression models on the test dataset. Results: We address this challenge by deriving an expected upper bound for the coefficient of determination (R2) for regression models when tested on the holdout dataset. This upper bound depends only on the noise associated with the response variable in a dataset as well as its variance. The upper bound estimate was validated via Monte Carlo simulations and then used as a tool to bootstrap performance of regression models trained on biological datasets, including protein sequence data, transcriptomic data, and genomic data. Conclusions: The new method for estimating upper bounds for model performance on test data should aid researchers in developing ML regression models that reach their maximum potential. Although we study biological datasets in this work, the new upper bound estimates will hold true for regression models from any research field or application area where response variables have associated noise.
  •  
2.
  •  
3.
  • Forslund, Sofia K., et al. (författare)
  • Combinatorial, additive and dose-dependent drug–microbiome associations
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7889, s. 500-505
  • Tidskriftsartikel (refereegranskat)abstract
    • During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1–5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.
  •  
4.
  • Gao, Xiang, et al. (författare)
  • Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter’s central active region
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification and characterization of new β-galactosidases will provide diverse candidate enzymes for use in food processing industry. In this study, two β-galactosidases, Nf-LacZ and WspA1, from the terrestrial cyanobacterium Nostoc flagelliforme were heterologously expressed in Escherichia coli, followed by purification and biochemical characterization. Nf-LacZ was characterized to have an optimum activity at 40 °C and pH 6.5, different from that (45 °C and pH 8.0) of WspA1. Two enzymes had a similar Michaelis constant (Km = 0.5 mmol/liter) against the substrate o-nitrophenyl-β-D-galactopyranoside. Their activities could be inhibited by galactostatin bisulfite, with IC50 values of 0.59 µM for Nf-LacZ and 1.18 µM for WspA1, respectively. Gel filtration analysis suggested that the active form of WspA1 was a dimer, while Nf-LacZ was functional as a larger multimer. WspA1 was further characterized by the truncation test, and its minimum central region was found to be from residues 188 to 301, having both the glycosyl hydrolytic and transgalactosylation activities. Finally, transgenic analysis with the GFP reporter protein found that the N-terminus of WspA1 (35 aa) might play a special role in the export of WspA1 from cells. In summary, this study characterized two cyanobacterial β-galactosidases for potential applications in food industry.
  •  
5.
  • Gao, Xiang, et al. (författare)
  • Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance
  • 2021
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2920 .- 1462-2912. ; 23:2, s. 713-727
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental stressors, especially low temperature, are very common on the earth's dryland systems. Terrestrial cyanobacteria have evolved with cold adaptability in addition to extreme dryness and high irradiation resistance. The dryland soil surface-dwelling species, Nostoc flagelliforme, serves as a potential model organism to gain insights into cyanobacterial cold adaptation. In this study, we performed transcriptomic analysis of N. flagelliforme samples in response to low temperature. The results revealed that the biological processes, such as terpenoid biosynthetic process, oxidoreductase activity, carbohydrate metabolism, biosynthesis of secondary metabolites, lipid and nitrogen metabolism, were significantly and dynamically changed during the cold stress. It was noteworthy that the transcription of the denitrification pathway for ammonia accumulation was enhanced, implying an importance for nitrogen utilization in stress resistance. In addition, characterization of a cold-responsive hypothetical gene csrnf1 found that it could greatly improve the cold-resistant performance of cells when it was heterologously expressed in transgenic Nostoc sp. PCC 7120. It was also found that csrnf1 transgenic strain exhibited resistance to nitrogen-deficient environmental stress. Considering that dryland cyanobacteria have to cope with low temperature on infertile soils, this study would enrich our understanding on the importance of multifunction of the genes for environmental cold adaptation in drylands.
  •  
6.
  • Geng, Jun, 1985, et al. (författare)
  • CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial variations in the human gut are harbored in temporal and spatial heterogeneity, and quantitative prediction of spatiotemporal dynamic changes in the gut microbiota is imperative for development of tailored microbiome-directed therapeutics treatments, e.g. precision nutrition. Given the high-degree complexity of microbial variations, subject to the dynamic interactions among host, microbial, and environmental factors, identifying how microbiota colonize in the gut represents an important challenge. Here we present COmputing the DYnamics of microbiota (CODY), a multiscale framework that integrates species-level modeling of microbial dynamics and ecosystem-level interactions into a mathematical model that characterizes spatial-specific in vivo microbial residence in the colon as impacted by host physiology. The framework quantifies spatiotemporal resolution of microbial variations on species-level abundance profiles across site-specific colon regions and in feces, independent of a priori knowledge. We demonstrated the effectiveness of CODY using cross-sectional data from two longitudinal metagenomics studies—the microbiota development during early infancy and during short-term diet intervention of obese adults. For each cohort, CODY correctly predicts the microbial variations in response to diet intervention, as validated by available metagenomics and metabolomics data. Model simulations provide insight into the biogeographical heterogeneity among lumen, mucus, and feces, which provides insight into how host physical forces and spatial structure are shaping microbial structure and functionality.
  •  
7.
  • Li, Gang, 1991, et al. (författare)
  • Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular basis of how temperature affects cell metabolism has been a long-standing question in biology, where the main obstacles are the lack of high-quality data and methods to associate temperature effects on the function of individual proteins as well as to combine them at a systems level. Here we develop and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovers enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) is predicted to be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast strain, we obtain a thermotolerant strain that outgrows the wild type, demonstrating the critical role of sterol metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates modelling of complex biological systems in the absence of high-quality data and therefore shows promise for becoming a standard tool for genome scale modeling.
  •  
8.
  • Li, Peishun, 1988, et al. (författare)
  • Metabolic Alterations in Older Women With Low Bone Mineral Density Supplemented With Lactobacillus reuteri
  • 2021
  • Ingår i: JBMR Plus. - : Wiley. - 2473-4039. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. Osteoporosis and its associated fractures are highly prevalent in older women. Recent studies have shown that gut microbiota play important roles in regulating bone metabolism. A previous randomized controlled trial (RCT) found that supplementation with Lactobacillus reuteri ATCC PTA 6475 (L.reuteri) led to substantially reduced bone loss in older women with low BMD. However, the total metabolic effects of L. reuteri supplementation on older women are still not clear. In this study, a post hoc analysis (not predefined) of serum metabolomic profiles of older women from the previous RCT was performed to investigate the metabolic dynamics over 1 year and to evaluate the effects of L. reuteri supplementation on human metabolism. Distinct segregation of the L. reuteri and placebo groups in response to the treatment was revealed by partial least squares-discriminant analysis. Although no individual metabolite was differentially and significantly associated with treatment after correction for multiple testing, 97 metabolites responded differentially at any one time point between L. reuteri and placebo groups (variable importance in projection score >1 and p value <0.05). These metabolites were involved in multiple processes, including amino acid, peptide, and lipid metabolism. Butyrylcarnitine was particularly increased at all investigated time points in the L. reuteri group compared with placebo, indicating that the effects of L. reuteri on bone loss are mediated through butyrate signaling. Furthermore, the metabolomic profiles in a case (low BMD) and control population (high BMD) of elderly women were analyzed to confirm the associations between BMD and the identified metabolites regulated by L. reuteri supplementation. The amino acids, especially branched-chain amino acids, showed association with L. reuteri treatment and with low BMD in older women, and may serve as potential therapeutic targets. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
9.
  • Li, Yonghong, et al. (författare)
  • Microbial profiling identifies potential key drivers in gastric cancer patients
  • 2021
  • Ingår i: Biotechnology and Biotechnological Equipment. - : Informa UK Limited. - 1310-2818 .- 1314-3530. ; 35:1, s. 496-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric cancer (GC) is the fifth most commonly diagnosed cancer and the third leading cause of cancer-related death in the world. Microbiota is believed to be associated with GC. Growing evidences showed Helicobacter pylori played a key role in GC development. However, little was known about the microbiota in gastric juices and tissues in GC patients, and thus it was difficult to understand other potential microbial causation for GC. Here, we collected the gastric juice and surgically removed gastric tissues from GC patients to give insight into GC microbiota. Most microbes identified in the gastric samples were opportunistic pathogens or resident flora of the human microbiota. Further network analyses identified five opportunistic pathogens as keystone species. H. pylori is the direct cause of GC, but other opportunistic microbes might also function in GC development. The microbiota in the gastric juice and gastric tissue of the GC patients were complex, and some dominant opportunistic pathogens contributed to the GC development. This study introduces microbiota in gastric juice, gastric normal tissue and gastric cancer tissue of GC patients, and highlights the potential keystone microbes functioned during GC development.
  •  
10.
  • Liu, Yuanfeng, et al. (författare)
  • Exploring Gut Microbiota in Patients with Colorectal Disease Based on 16S rRNA Gene Amplicon and Shallow Metagenomic Sequencing
  • 2021
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media SA. - 2296-889X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The gastrointestinal tract, the largest human microbial reservoir, is highly dynamic. The gut microbes play essential roles in causing colorectal diseases. In the present study, we explored potential keystone taxa during the development of colorectal diseases in central China. Fecal samples of some patients were collected and were allocated to the adenoma (Group A), colorectal cancer (Group C), and hemorrhoid (Group H) groups. The 16S rRNA amplicon and shallow metagenomic sequencing (SMS) strategies were used to recover the gut microbiota. Microbial diversities obtained from 16S rRNA amplicon and SMS data were similar. Group C had the highest diversity, although no significant difference in diversity was observed among the groups. The most dominant phyla in the gut microbiota of patients with colorectal diseases were Bacteroidetes, Firmicutes, and Proteobacteria, accounting for >95% of microbes in the samples. The most abundant genera in the samples were Bacteroides, Prevotella, and Escherichia/Shigella, and further species-level and network analyses identified certain potential keystone taxa in each group. Some of the dominant species, such as Prevotella copri, Bacteroides dorei, and Bacteroides vulgatus, could be responsible for causing colorectal diseases. The SMS data recovered diverse antibiotic resistance genes of tetracycline, macrolide, and beta-lactam, which could be a result of antibiotic overuse. This study explored the gut microbiota of patients with three different types of colorectal diseases, and the microbial diversity results obtained from 16S rRNA amplicon sequencing and SMS data were found to be similar. However, the findings of this study are based on a limited sample size, which warrants further large-scale studies. The recovery of gut microbiota profiles in patients with colorectal diseases could be beneficial for future diagnosis and treatment with modulation of the gut microbiota. Moreover, SMS data can provide accurate species- and gene-level information, and it is economical. It can therefore be widely applied in future clinical metagenomic studies.
  •  
11.
  • Lu, Hongzhong, 1987, et al. (författare)
  • Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection
  • 2021
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
  •  
12.
  • Luo, Hao, 1992, et al. (författare)
  • Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri
  • 2021
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Limosilactobacillus reuteri (earlier known as Lactobacillus reuteri) is a well-studied lactic acid bacterium, with some specific strains used as probiotics, that exists in different hosts such as human, pig, goat, mouse and rat, with multiple body sites such as the gastrointestinal tract, breast milk and mouth. Numerous studies have confirmed the beneficial effects of orally administered specific L. reuteri strains, such as preventing bone loss and promoting regulatory immune system development. L. reuteri ATCC PTA 6475 is a widely used strain that has been applied in the market as a probiotic due to its positive effects on the human host. Its health benefits may be due, in part, to the production of beneficial metabolites. Considering the strain-specific effects and genetic diversity of L. reuteri strains, we were interested to study the metabolic versatility of these strains. Results In this study, we aimed to systematically investigate the metabolic features and diversities of L. reuteri strains by using genome-scale metabolic models (GEMs). The GEM of L. reuteri ATCC PTA 6475 was reconstructed with a template-based method and curated manually. The final GEM iHL622 of L. reuteri ATCC PTA 6475 contains 894 reactions and 726 metabolites linked to 622 metabolic genes, which can be used to simulate growth and amino acids utilization. Furthermore, we built GEMs for the other 35 L. reuteri strains from three types of hosts. The comparison of the L. reuteri GEMs identified potential metabolic products linked to the adaptation to the host. Conclusions The GEM of L. reuteri ATCC PTA 6475 can be used to simulate metabolic capabilities and growth. The core and pan model of 35 L. reuteri strains shows metabolic capacity differences both between and within the host groups. The GEMs provide a reliable basis to investigate the metabolism of L. reuteri in detail and their potential benefits on the host.
  •  
13.
  • Marcisauskas, Simonas, 1988, et al. (författare)
  • Draft genome sequences of five fungal strains isolated from Kefir
  • 2021
  • Ingår i: Microbiology Resource Announcements. - 2576-098X. ; 10:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the annotated draft genome sequences of five fungal strains isolated from kefir grains. These isolates included three ascomycetous (Candida californica, Kazachstania exigua, and Kazachstania unispora) and one basidiomycetous (Rhodotorula mucilaginosa) species. The results revealed a detailed overview of the metabolic features of kefir fungi that will be potentially useful in biotechnological applications.
  •  
14.
  • Qin, Jiufu, 1985, et al. (författare)
  • Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues
  • 2021
  • Ingår i: Nature Catalysis. - : Springer Science and Business Media LLC. - 2520-1158. ; 4:6, s. 498-509
  • Tidskriftsartikel (refereegranskat)abstract
    • Structurally complex and diverse polyamines and polyamine analogues are potential therapeutics and agrochemicals that can address grand societal challenges, for example, healthy ageing and sustainable food production. However, their structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from natural resources. Here we reprogrammed the metabolism of baker’s yeast Saccharomyces cerevisiae and recruited nature’s diverse reservoir of biochemical tools to enable a complete biosynthesis of multiple polyamines and polyamine analogues. Specifically, we adopted a systematic engineering strategy to enable gram-per-litre-scale titres of spermidine, a central metabolite in polyamine metabolism. To demonstrate the potential of our polyamine platform, various polyamine synthases and ATP-dependent amide-bond-forming systems were introduced for the biosynthesis of natural and unnatural polyamine analogues. The yeast platform serves as a resource to accelerate the discovery and production of polyamines and polyamine analogues, and thereby unlocks this chemical space for further pharmacological and insecticidal studies. [Figure not available: see fulltext.]
  •  
15.
  • Yang, Yudie, et al. (författare)
  • Advances in the Relationships Between Cow’s Milk Protein Allergy and Gut Microbiota in Infants
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Cow’s milk protein allergy (CMPA) is an immune response to cow’s milk proteins, which is one of the most common food allergies in infants and young children. It is estimated that 2–3% of infants and young children have CMPA. The diet, gut microbiota, and their interactions are believed to be involved in the alterations of mucosal immune tolerance, which might lead to the development of CMPA and other food allergies. In this review, the potential molecular mechanisms of CMPA, including omics technologies used for analyzing microbiota, impacts of early microbial exposures on CMPA development, and microbiota–host interactions, are summarized. The probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and other modulation strategies for gut microbiota and the potential application of microbiota-based design of diets for the CMPA treatment are also discussed. This review not only summarizes the current studies about the interactions of CMPA with gut microbiota but also gives insights into the possible CMPA treatment strategies by modulating gut microbiota, which might help in improving the life quality of CMPA patients in the future.
  •  
16.
  • Zhang, Xiaoling, et al. (författare)
  • Developments in Fatty Acid-Derived Insect Pheromone Production Using Engineered Yeasts
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • The use of traditional chemical insecticides for pest control often leads to environmental pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied for sustainable biocontrol of pests in fields, due to their limited adverse impacts on biodiversity and food safety compared to that of other conventional insecticides. However, the structures of insect pheromones are complex, and their chemical synthesis is not commercially feasible. As yeasts have been widely used for fatty acid-derived pheromone production in the past few years, using engineered yeasts may be promising and sustainable for the low-cost production of fatty acid-derived pheromones. The primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16 and C18, and it is also possible to rewire/reprogram the metabolic flux for other fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic engineering and synthetic biology strategies to produce insect pheromones. In the future, insect pheromones produced by yeasts might provide an eco-friendly pest control method in agricultural fields.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ji, Boyang, 1983 (16)
Nielsen, Jens B, 196 ... (9)
Zelezniak, Aleksej, ... (2)
Kristensen, M (1)
Olsson, Lisa M., 198 ... (1)
Zhang, Cheng (1)
visa fler...
Tremaroli, Valentina ... (1)
Bäckhed, Fredrik, 19 ... (1)
Lorentzon, Mattias, ... (1)
Liu, Ke (1)
Collet, Jean-Philipp ... (1)
Kerkhoven, Eduard, 1 ... (1)
Roos, Stefan (1)
Hansen, Torben (1)
Montalescot, Gilles (1)
Galan, Pilar (1)
Hercberg, Serge (1)
Clement, K (1)
Caesar, Robert, 1973 (1)
Vestergaard, H. (1)
Bork, Peer (1)
Køber, Lars (1)
Ledesma-Amaro, R. (1)
Aron-Wisnewsky, Judi ... (1)
Myridakis, Antonis (1)
Forslund, Sofia K. (1)
Nielsen, Trine (1)
Adriouch, Solia (1)
Chilloux, J. (1)
Vieira-Silva, Sara (1)
Falony, Gwen (1)
Salem, Joe-Elie (1)
Andreelli, Fabrizio (1)
Belda, Eugeni (1)
Le Chatelier, Emmanu ... (1)
Olanipekun, Michael (1)
Hoyles, L. (1)
Alves, Renato (1)
Helft, Gerard (1)
Isnard, Richard (1)
Coelho, Luis P. (1)
Rouault, Christine (1)
Gauguier, Dominique (1)
Gøtze, Jens P. (1)
Prifti, Edi (1)
Barthelemy, Olivier (1)
Bastard, Jean-Philli ... (1)
Batisse, Jean-Paul (1)
Berland, Magalie (1)
Bittar, Randa (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (16)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (8)
Teknik (7)
Lantbruksvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy