SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karimi Keikhosro) srt2:(2005-2009)"

Sökning: WFRF:(Karimi Keikhosro) > (2005-2009)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abedinifar, S., et al. (författare)
  • Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation
  • 2009
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 0961-9534 .- 1873-2909. ; 33:5, s. 828-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and β-glucosidase enzymes were first investigated and their best performance obtained at 45 °C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g-1 sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g-1) and untreated straw (0.46 g g-1). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L-1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g-1 ethanol, 0.11-0.17 g g-1 biomass, and 0.04-0.06 g g-1 glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g-1 ethanol, 0.04-0.10 g g-1 biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g-1. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g-1, respectively. 
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Karimi, Keikhosro, et al. (författare)
  • Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production
  • 2005
  • Ingår i: BIOTECHNOLOGY LETTERS. - : Springer Science and Business Media LLC. - 0141-5492 .- 1573-6776. ; 27:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucor indicus fermented dilute-acid lignocellulosic hydrolyzates to ethanol in fed-batch cultivation with complete hexose utilization and partial uptake of xylose. The fungus was tolerant to the inhibitors present in the hydrolyzates. It grew in media containing furfural (1 g/l), hydroxymethylfurfural (1 g/l), vanillin (1 g/l), or acetic acid (7 g/l), but did not germinate directly in the hydrolyzate. However, with fed-batch methodology, after initial growth of M. indicus in 500 ml enzymatic wheat hydrolyzate, lignocellulosic hydrolyzate was fermented with feeding rates 55 and 100 ml/h. The fungus consumed more than 46% of the initial xylose, while less than half of this xylose was excreted in the form of xylitol. The ethanol yield was 0.43 g/g total consumed sugar, and reached the maximum concentration of 19.6 g ethanol/l at the end of feeding phase. Filamentous growth, which is regarded as the main obstacle to large-scale cultivation of M. indicus, was avoided in the fed-batch experiments.
  •  
9.
  •  
10.
  •  
11.
  • Lennartsson, Patrik R, 1983, et al. (författare)
  • Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition
  • 2009
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 143:4, s. 255-261
  • Tidskriftsartikel (refereegranskat)abstract
    • The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g(-1) with productivities of 3.2-5.0 g l(-1) h(-1). The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l(-1) h(-1) by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l(-1) furfural and 10 g l(-1) acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.
  •  
12.
  • Lennartsson, Patrik R, 1983, et al. (författare)
  • Ethanol production from lignocellulose by the dimorphic fungus Mucor indicus
  • 2008
  • Ingår i: World Bioenergy. Jönköping, Sweden, 27-29 May, 2008.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Ethanol production from dilute-acid hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then ysed to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus is useful for ethanol production from toxic substrates independent of its morphology.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Sharifia, Mahnaz, et al. (författare)
  • Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose and molasses
  • 2008
  • Ingår i: Journal of Industrial Microbiology & Biotechnology. - : Springer. - 1367-5435 .- 1476-5535. ; 35:11, s. 1253-1259
  • Tidskriftsartikel (refereegranskat)abstract
    • The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.
  •  
19.
  •  
20.
  • Taherzadeh, Mohammad J., et al. (författare)
  • Bioethanol : Market and production processes
  • 2008
  • Ingår i: Biofuels refining and performance. - New York : McGraw-Hill. - 9780071489706 ; , s. 69-106
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy