SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keramidas A.) srt2:(2010-2014)"

Sökning: WFRF:(Keramidas A.) > (2010-2014)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aaron, F. D., et al. (författare)
  • Combined measurement and QCD analysis of the inclusive e(+/-)p scattering cross sections at HERA
  • 2010
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :1
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e(+/-)p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q(2), and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
  •  
2.
  • Aaron, F. D., et al. (författare)
  • Events with an isolated lepton and missing transverse momentum and measurement of W production at HERA
  • 2010
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; 2010:3, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for events containing an isolated electron or muon and missing trans verse momentum produced in e(+/-)p collisions is performed with the H1 and ZEUS detectors at HERA. The data were taken in the period 1994-2007 and correspond to an integrated luminosity of 0.98 fb(-1). The observed event yields are in good overall agreement with the Standard Model prediction, which is dominated by single W production. In the e(+)p data, at large hadronic transverse momentum P-T(X) > 25GeV, a total of 23 events are observed compared to a prediction of 14.0 +/- 1.9. The total single W boson production cross section is measured as 1.06 +/- 0.16 (stat.) +/- 0.07 (sys.) pb, in agreement with an Standard Model (SM) expectation of 1.26 +/- 0.19 pb.
  •  
3.
  • Aaron, F. D., et al. (författare)
  • Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA
  • 2012
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 72:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy root s = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6 % for the most precise points. The combined data cover the range 2.5 < Q(2) < 200 GeV2 in photon virtuality, 0.00035 < x(P) < 0.09 in proton fractional momentum loss, 0.09 < vertical bar t vertical bar < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/x(P), where x is the Bjorken scaling variable.
  •  
4.
  • Abramowicz, H., et al. (författare)
  • Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA
  • 2013
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 73:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections sigma(c (c) over bar)(red) for charm production are obtained in the kinematic range of photon virtuality 2.5 <= Q(2) <= 2000 GeV2 and Bjorken scaling variable 3 . 10(-5) <= x <= 5 . 10(-2). The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W-+/- and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
  •  
5.
  • Goel, Bhavishya, 1981, et al. (författare)
  • Infrastructures for Measuring Power
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Energy-aware resource management requires some means of measuring power consumption. We present three approaches to measuring processor power. The easiest, least intrusive places a power meter between the system and power outlet. Unfortunately, this provides a single system measurement, and acuity is limited by device sampling frequency. Another method samples power at PSU voltage outputs using current transducers. This logs consumption separately per component, but requires custom hardware and an expensive analog acquisition device. A more accurate alternative samples power directly at the processor voltage regulator’s current-sensing pin, but requires motherboard intrusion. We explain implementation of each approach step-by-step.
  •  
6.
  •  
7.
  • Keramidas, G., et al. (författare)
  • Embedded reconfigurable computing: The ERA approach
  • 2013
  • Ingår i: IEEE International Conference on Industrial Informatics (INDIN). - 1935-4576. ; , s. 827-832
  • Konferensbidrag (refereegranskat)abstract
    • The growing complexity and diversity of embedded systems-combined with continuing demands for higher performance and lower power consumption-places increasing pressure on embedded platforms designers. The target of the ERA project is to offer a holistic, multi-dimensional methodology to address these problems in a unified framework exploiting the inter-and intra-synergism between the reconfigurable hardware (core, memory, and network resources), the reconfigurable software (compiler and tools), and the run-time system. Starting from the hardware level, we design our platform via a structured approach that allows integration of reconfigurable computing elements, network fabrics, and memory hierarchy components. These hardware elements can adapt their composition, organization, and even instruction-set architectures to exploit tradeoffs in performance and power. Appropriate hardware resources can be selected both statically at design time and dynamically at run time. Hardware details are exposed to our custom operating system, our custom runtime system, and our adaptive compiler, and are even visible all the way up to the application level. The design philosophy followed in the ERA project proved efficient enough not only to enable a better choice of power/performance trade-offs but also to support fast platform prototyping of high-efficiency embedded system designs. In this paper, we present a brief overview of the design approach, the major outcomes, and the lessons learned in the ERA project.
  •  
8.
  •  
9.
  •  
10.
  • Wong, S., et al. (författare)
  • Early results from ERA embedded reconfigurable architectures
  • 2011
  • Ingår i: 9th IEEE International Conference on Industrial Informatics, INDIN 2011, Lisbon, 26-29 July 2011. - 1935-4576. - 9781457704345 ; , s. 816-822
  • Konferensbidrag (refereegranskat)abstract
    • The growing complexity and diversity of embedded systems combined with continuing demands for higher performance and lower power consumption place increasing pressure on embedded platforms designers. To address these problems, the Embedded Reconfigurable Architectures project (ERA), investigates innovations in both hardware and tools to create next-generation embedded systems. Leveraging adaptive hardware enables maximum performance for given power budgets. We design our platform via a structured approach that allows integration of reconfigurable computing elements, network fabrics, and memory hierarchy components. Commercially available, off-the-shelf processors are combined with other proprietary and application-specific, dedicated cores. These computing and network elements can adapt their composition, organization, and even instruction-set architectures in an effort to provide the best possible trade-offs in performance and power for the given application(s). Likewise, network elements and topologies and memory hierarchy organization can be selected both statically at design time and dynamically at run-time. Hardware details are exposed to the operating system, run-time system, compiler, and applications. This combination supports fast platform prototyping of high-efficient embedded system designs. Our design philosophy supports the freedom to flexibly tune all these hardware elements, enabling a better choice of power/performance trade-offs than that afforded by the current state of the art.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy