SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kienlin A.) srt2:(2010-2014)"

Sökning: WFRF:(Kienlin A.) > (2010-2014)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abadie, J., et al. (författare)
  • Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 760:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10(-2) M-circle dot c(2) at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
  •  
2.
  • Abdo, A. A., et al. (författare)
  • Fermi Large Area Telescope constraints on the gamma-ray opacity of the universe
  • 2010
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 723:2, s. 1082-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.
  •  
3.
  • Ackermann, M., et al. (författare)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
4.
  • Ackermann, M., et al. (författare)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
5.
  • Ackermann, M., et al. (författare)
  • FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A
  • 2010
  • Ingår i: ASTROPHYS J LETT. - 2041-8205. ; 717:2, s. L127-L132
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to similar to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.
  •  
6.
  • Noutsos, A., et al. (författare)
  • Radio and γ-ray constraints on the emission geometry and birthplace of PSR j2043+2740
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 728:2, s. 77-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first year of Fermi γ-ray observations of pulsed high-energy emission from the old PSR J2043 + 2740. The study of the γ-ray efficiency of such old pulsars gives us an insight into the evolution of pulsars' ability to emit in γ rays as they age. The y-ray light curve of this pulsar above 0.1 GeV is clearly defined by two sharp peaks, 0.353 ± 0.035 periods apart. We have combined the γ-ray profile characteristics of PSR J2043 + 2740 with the geometrical properties of the pulsar's radio emission, derived from radio-polarization data, and constrained the pulsar-beam geometry in the framework of a two-pole caustic (TPC) and an outer gap (OG) model. The ranges of magnetic inclination and viewing angle were determined to be {α, ζ} ∼ {52°-57°, 61°-68°} for the TPC model, and {α, ζ} ∼ {62°-73°, 74°-81°} and {α, ζ,} ∼ {72°-83°, 60°-75°} for the OG model. Based on this geometry, we assess possible birth locations for this pulsar and derive a likely proper motion, sufficiently high to be measurable with VLBI. At a characteristic age of 1.2 Myr, PSR J2043 + 2740 is the third oldest of all discovered, non-recycled, γ-ray pulsars: it is twice as old as the next oldest, PSR J0357 + 32, and younger only than the recently discovered PSR J1836 + 5925 and PSR J2055 + 25, both of which are at least five and ten times less energetic, respectively.
  •  
7.
  • Abdo, A. A., et al. (författare)
  • SUZAKU OBSERVATIONS OF LUMINOUS QUASARS : REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:1, s. 835-849
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.
  •  
8.
  • Preece, R., et al. (författare)
  • The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
  •  
9.
  • Abdo, A. A., et al. (författare)
  • DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A
  • 2011
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 734:2, s. L27-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activity as their power source.
  •  
10.
  • Ackermann, M., et al. (författare)
  • Determination of the point-spread function for the fermi large area telescope from on-orbit data and limits on pair halos of active galactic nuclei
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 54-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from approximate to 20 MeV to > 300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of gamma rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of gamma-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low-and high-redshift BL Lac AGNs and the TeV blazars 1ES0229 + 200 and 1ES0347-121.
  •  
11.
  • Ackermann, M., et al. (författare)
  • Fermi observations of GRB 090510 : A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:2, s. 1178-1190
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gammaray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E-peak = 3.9 +/- 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 +/- 0.03 that dominates the emission below approximate to 20 keV and above approximate to 100 MeV. The onset of the high-energy spectral component appears to be delayed by similar to 0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5(-2.6)(+5.8) GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Gamma greater than or similar to 1200, using simple.. opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the approximate to 100 keV-few MeV flux. Stricter high confidence estimates imply Gamma greater than or similar to 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
  •  
12.
  • Ackermann, M., et al. (författare)
  • Multiwavelength observations of GRB 110731A : GeV emission from onset to afterglow
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:2, s. 71-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ∼ 500-550.
  •  
13.
  • Ackermann, M., et al. (författare)
  • THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG
  • 2013
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 209:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (greater than or similar to 20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above similar to 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.
  •  
14.
  • Ackermann, M., et al. (författare)
  • Constraining The High-Energy Emission From Gamma-Ray Bursts With Fermi
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 754:2, s. 121-
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nu F-nu spectra (E-pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E-pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
  •  
15.
  • Ackermann, M., et al. (författare)
  • Fermi Detection of γ-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:2, s. 144-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Geostationary Operational Environmental Satellite (GOES) M2-class solar flare, SOL2010-06-12T00: 57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an similar to 50 s impulsive burst of hard X-and gamma-ray emission up to at least 400 MeV observed by the Fermi Gamma-ray Burst Monitor and Large Area Telescope experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or similar to 300 MeV with a delay of similar to 10 s from mildly relativistic electrons, but some reached these energies in as little as similar to 3 s. The gamma-ray line fluence from this flare was about 10 times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma-rays.
  •  
16.
  • Axelsson, Magnus, et al. (författare)
  • GRB110721A : AN EXTREME PEAK ENERGY AND SIGNATURES OF THE PHOTOSPHERE
  • 2012
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 757:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for similar to 24.5 s (in the GBM) and had a peak flux of (5.7 +/- 0.2) x 10(-5) erg s(-1) cm(-2). The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 +/- 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of -1.89 +/- 0.10. The temperature of the blackbody component also decreased, starting from similar to 80 keV, and the decay showed a significant break after similar to 2 s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.
  •  
17.
  • Soderberg, A. M., et al. (författare)
  • PANCHROMATIC OBSERVATIONS OF SN 2011dh POINT TO A COMPACT PROGENITOR STAR
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 752:2, s. 78-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN 2011dh using data from the Swift and Chandra satellites, placing it among the best-studied X-ray supernovae (SNe) to date. We further present millimeter and radio data obtained with the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the Expanded Very Large Array during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic data set is well described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. In this scenario, the shock partition fractions deviate from equipartition by a factor, (epsilon(e)/epsilon(B)) similar to 30. We derive the properties of the shock wave and the circumstellar environment and find a time-averaged shock velocity of (v) over bar approximate to 0.1c and a progenitor mass-loss rate of (M) over dot approximate to 6x10(-5) M-circle dot yr(-1) (for an assumed wind velocity, v(w) = 1000 km s(-1)). We show that these properties are consistent with the sub-class of Type IIb SNe characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of R-* approximate to 10(11) cm, in line with the expectations for a Type cIIb SN. Together, these diagnostics are difficult to reconcile with the extended radius of the putative yellow supergiant progenitor star identified in archival Hubble Space Telescope observations, unless the stellar density profile is unusual. Finally, we searched for the high-energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the shock breakout pulse was detectable with current instruments but likely missed due to their limited temporal/spatial coverage. Future all-sky missions will regularly detect shock breakout emission from compact SN progenitors enabling prompt follow-up observations with sensitive multi-wavelength facilities.
  •  
18.
  • Gruber, D, et al. (författare)
  • Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528:A15
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper we examine gamma-ray and optical data of GRB 091024, a gamma-ray burst (GRB) with an extremely long duration of T90 $\approx$ 1020 s, as observed with the Fermi Gamma-ray Burst Monitor (GBM). Methods: We present spectral analysis of all three distinct emission episodes using data from Fermi/GBM. Because of the long nature of this event, many ground-based optical telescopes slewed to its location within a few minutes and thus were able to observe the GRB during its active period. We compare the optical and gamma-ray light curves. Furthermore, we estimate a lower limit on the bulk Lorentz factor from the variability and spectrum of the GBM light curve and compare it with that obtained from the peak time of the forward shock of the optical afterglow. Results: From the spectral analysis we note that, despite its unusually long duration, this burst is similar to other long GRBs, i.e. there is spectral evolution (both the peak energy and the spectral index vary with time) and spectral lags are measured. We find that the optical light curve is highly anti-correlated to the prompt gamma-ray emission, with the optical emission reaching the maximum during an epoch of quiescence in the prompt emission. We interpret this behavior as the reverse shock (optical flash), expected in the internal-external shock model of GRB emission but observed only in a handful of GRBs so far. The lower limit on the initial Lorentz factor deduced from the variability time scale (Γmin = 195_-110+90) is consistent within the error to the one obtained using the peak time of the forward shock (Γ0 = 120) and is also consistent with Lorentz factors of other long GRBs.
  •  
19.
  • Gruber, D, et al. (författare)
  • Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531:A20
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν spectrum (Ep,rest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T90,rest) and the isotropic equivalent bolometric energy (Eiso). Results: The distribution of Ep,rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-Ep population is found but the distribution is biased against low Ep values. We find the lowest possible Ep that GBM can recover to be $\approx$ 15 keV. The T90,rest distribution of long GRBs peaks at ~10 s. The distribution of Eiso has mean and median values of 8.9 × 1052 erg and 8.2 × 1052 erg, respectively. We confirm the tight correlation between Ep,rest and Eiso (Amati relation) and the one between Ep,rest and the 1-s peak luminosity (Lp) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α gets softer when Ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither Ep,rest nor T90,rest.
  •  
20.
  • Burgess, J. M., et al. (författare)
  • Time-resolved analysis of fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 784:1, s. 17-
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. The GRB spectrum is therefore modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. To produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index a is consistent with a synchrotron component with a = -0.81 +/- 0.1. This value lies between the limiting values of a = -2/3 and a = -3/2 for electrons in the slow-and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. In addition, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.
  •  
21.
  • Goldstein, Adam, et al. (författare)
  • The Fermi GBM Gamma-Ray Burst Spectral Catalog : The First Two Years
  • 2012
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
22.
  • Tierney, D, et al. (författare)
  • Anomalies in low-energy gamma-ray burst spectra with the Fermi Gamma-ray Burst Monitor
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 550
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the Fermi era.Aims: We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the Fermi Gamma-ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2 × 10-5 erg/cm2 (10-1000 keV).Methods: An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the instrument response. This method was employed for both time-integrated burst spectra and time-resolved bins defined by a signal-to-noise ratio of 25σ and 50σ.Results: Significant deviations are evident in 3 bursts (GRB 081215A, GRB 090424 and GRB 090902B) in the time-integrated sample (~7%) and 5 bursts (GRB 090323, GRB 090424, GRB 090820, GRB 090902B and GRB 090926A) in the time-resolved sample (~11%).Conclusions: The advantage of the systematic, blind search analysis is that it can demonstrate the requirement for an additional spectral component without any prior knowledge of the nature of that extra component. Deviations are found in a large fraction of high fluence GRBs; fainter GRBs may not have sufficient statistics for deviations to be found using this method.
  •  
23.
  • von Kienlin, Andreas, et al. (författare)
  • The Second Fermi GBM Gamma-Ray Burst Catalog : The First Four Years
  • 2014
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 211:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
24.
  • Burgess, J Michael, et al. (författare)
  • Constraints on the Synchrotron Shock Model for the Fermi GRB 090820A Observed by Gamma-Ray Burst Monitor
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 741:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the vF(v) peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits.
  •  
25.
  • Guiriec, Sylvain, et al. (författare)
  • Detection of a thermal spectral component in the prompt emission of GRB 100724B
  • 2011
  • Ingår i: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 727:2, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy