SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koppram Rakesh 1986) srt2:(2015)"

Sökning: WFRF:(Koppram Rakesh 1986) > (2015)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franzén, Carl Johan, 1966, et al. (författare)
  • Multifeed simultaneous saccharification and fermentation enables high gravity submerged fermentation of lignocellulose.
  • 2015
  • Ingår i: Recent Advances in Fermentation Technology (RAFT 11), Clearwater Beach, Florida, USA, November 8-11, 2015. Oral presentation..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Today, second generation bioethanol production is becoming established in production plants across the world. In addition to its intrinsic value, the process can be viewed as a model process for biotechnological conversion of recalcitrant lignocellulosic raw materials to a range of chemicals and other products. So called High Gravity operation, i.e. fermentation at high solids loadings, represents continued development of the process towards higher product concentrations and productivities, and improved energy and water economy. We have employed a systematic, model-driven approach to the design of feeding schemes of solid substrate, active yeast adapted to the actual substrate, and enzymes to fed-batch simultaneous saccharification and co-fermentation (Multifeed SSCF) of steam-pretreated lignocellulosic materials in stirred tank reactors. With this approach, mixing problems were avoided even at water insoluble solids contents of 22%, leading to ethanol concentrations of 56 g/L within 72 hours of SSCF on wheat straw. Similar fermentation performance was verified in 10 m3 demonstration scale using wheat straw, and in lab scale on birch and spruce, using several yeast strains. The yeast was propagated in the liquid fraction obtained by press filtration of the pretreated slurry. Yet, even with such preadaptation and repeated addition of fresh cells, the viability in the SSCF dropped due to interactions between lignocellulose-derived inhibitors, the produced ethanol and the temperature. Decreasing the temperature from 35 to 30°C when the ethanol concentration reached 40-50 g/L resulted in rapid initial hydrolysis, maintained fermentation capacity, lower residual glucose and xylose and ethanol concentrations above 60 g/L.
  •  
2.
  • Koppram, Rakesh, 1986, et al. (författare)
  • Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales
  • 2015
  • Ingår i: Fuel production from non-food biomass: Corn stover. - : Apple Academic Press. - 9781498728430 - 9781771881234 ; , s. 155-179
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The global CO2 emissions in 2010 from fossil energy use grew at the fastest rate since 1969. The year 2010 also witnessed that the global oil production did not match the rapid growth in consumption [1]. These recent data further intensify worldwide concerns about greenhouse gas emissions and energy security for a sustained economic development. For a reduced dependence on oil from fossil reserves, use of biofuels such as bioethanol from abundantly available lignocellulosic biomass is of great interest nowadays because they will count towards meeting the mandate of 10% binding target for biofuels from renewable sources in the transport for all European member states by 2020 [2]. Along with this interest comes increased interest in commercializing ethanol production technology from inexpensive lignocellulosic feedstocks which includes wood biomass, agricultural and forestry residues, biodegradable fraction of industrial and municipal wastes. Irrespective of type, the basic structural composition of lignocellulosic biomass consists of cellulose, hemicellulose and lignin. The cellulose and hemicellulose that form the polysaccharide fraction are embedded in a recalcitrant and inaccessible arrangement [3] and therefore requires a pretreatment step to disrupt the structure and make it accessible for subsequent steps. Since lignocellulosic materials are very complex, not one pretreatment method can apply for all the materials. Several methods that are classified in to physical, physico-chemical, chemical and biological pretreatment have been investigated and an elaborate review on each of these methods has been presented by Taherzadeh and Karimi [4]. One of the most commonly used pretreatment methods is steam explosion, with the addition of H2SO4 or SO2, which removes most of the hemicellulose, followed by enzymatic hydrolysis to convert cellulose to glucose [5,6].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy