SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lovestone S.) srt2:(2015-2019)"

Sökning: WFRF:(Lovestone S.) > (2015-2019)

  • Resultat 1-25 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
9.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
10.
  • ten Kate, M., et al. (författare)
  • MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: With the shift of research focus towards the pre-dementia stage of Alzheimer's disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) epsilon 4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 +/- 72, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69. 1 +/- 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 +/- 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE epsilon 4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 +/- O. 07 in MCI and an AUC of 0.74 +/- 0.08 in CN. In CN, selected features for the classifier included APOE epsilon 4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE epsilon 4 information did not improve after additionally adding imaging measures. Conclusions: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE epsilon 4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.
  •  
11.
  • Westwood, S., et al. (författare)
  • Plasma Protein Biomarkers for the Prediction of CSF Amyloid and Tau and F-18 -Flutemetamol PET Scan Result
  • 2018
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood biomarkers may aid in recruitment to clinical trials of Alzheimer's disease (AD) modifying therapeutics by triaging potential trials participants for amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) A beta and tau tests. Objective: To discover a plasma proteomic signature associated with CSF and PET measures of AD pathology. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics were performed in plasma from participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, recruited to the Amsterdam Dementia Cohort, stratified by CSF Tau/A beta(42) (n = 50). Technical replication and independent validation were performed by immunoassay in plasma from SCD, MCI, and AD participants recruited to the Amsterdam Dementia Cohort with CSF measures (n = 100), MCI participants enrolled in the GE067-005 study with [F-18]-Flutemetamol PET amyloid measures (n = 173), and AD, MCI and cognitively healthy participants from the EMIF 500 study with CSF A beta(42) measurements (n = 494). Results: 25 discovery proteins were nominally associated with CSF Tau/A beta(42) (P < 0.05) with associations of ficolin-2 (FCN2), apolipoprotein C -IV and fibrinogen f, chain confirmed by immunoassay (P < 0.05). In the GE067-005 cohort, FCN2 was nominally associated with PET amyloid (P < 0.05) replicating the association with CSF Tau/A beta(42). There were nominally significant associations of complement component 3 with PET amyloid, and apolipoprotein(a), apolipoprotein A-I, ceruloplasmin, and PPY with MCI conversion to AD (all P < 0.05). In the EMIF 500 cohort FCN2 was trending toward a significant relationship with CSF A beta(42) (P approximate to 0.05), while both Al AT and clusterin were nominally significantly associated with CSF A beta(42) (both P < 0.05). Conclusion: Associations of plasma proteins with multiple measures of AD pathology and progression are demonstrated. To our knowledge this is the first study to report an association of FCN2 with AD pathology. Further testing of the proteins in larger independent cohorts will be important.
  •  
12.
  • Bos, I., et al. (författare)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
13.
  • O'Bryant, S. E., et al. (författare)
  • Comparing biological markers of Alzheimer's disease across blood fraction and platforms: Comparing apples to oranges
  • 2016
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 3, s. 27-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study investigated the comparability of potential Alzheimer's disease (AD) biomarkers across blood fractions and assay platforms. Methods: Nonfasting serum and plasma samples from 300 participants (150 AD patients and 150 controls) were analyzed. Proteomic markers were obtained via electrochemiluminescence or Luminex technology. Comparisons were conducted via Pearson correlations. The relative importance of proteins within an AD diagnostic profile was examined using random forest importance plots. Results: On the Meso Scale Discovery multiplex platform, 10 of the 21 markers shared >50% of the variance across blood fractions (serum amyloid A R2 = 0.99, interleukin (IL)10 R2 = 0.95, fatty acid-binding protein (FABP) R2 = 0.94, I309 R2 = 0.94, IL-5 R2 = 0.94, IL-6 R2 = 0.94, eotaxin3 R2 = 0.91, IL-18 R2 = 0.87, soluble tumor necrosis factor receptor 1 R2 = 0.85, and pancreatic polypeptide R2 = 0.81). When examining protein concentrations across platforms, only five markers shared >50% of the variance (beta 2 microglobulin R2 = 0.92, IL-18 R2 = 0.80, factor VII R2 = 0.78, CRP R2 = 0.74, and FABP R2 = 0.70). Discussion: The current findings highlight the importance of considering blood fractions and assay platforms when searching for AD relevant biomarkers. © 2016 The Authors.
  •  
14.
  •  
15.
  • Bateman, R J, et al. (författare)
  • Plasma Biomarkers of AD Emerging as Essential Tools for Drug Development: An EU/US CTAD Task Force Report.
  • 2019
  • Ingår i: The journal of prevention of Alzheimer's disease. - : SERDI. - 2426-0266 .- 2274-5807. ; 6:3, s. 169-173
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need to develop reliable and sensitive blood-based biomarkers of Alzheimer's disease (AD) that can be used for screening and to increase the efficiency of clinical trials. The European Union-North American Clinical Trials in Alzheimer's Disease Task Force (EU/US CTAD Task Force) discussed the current status of blood-based AD biomarker development at its 2018 annual meeting in Barcelona, Spain. Recent improvements in technologies to assess plasma levels of amyloid beta indicate that a single sample of blood could provide an accurate estimate of brain amyloid positivity. Plasma neurofilament light protein appears to provide a good marker of neurodegeneration, although not specific for AD. Plasma tau shows some promising results but weak or no correlation with CSF tau levels, which may reflect rapid clearance of tau in the bloodstream. Blood samples analyzed using -omics and other approaches are also in development and may provide important insight into disease mechanisms as well as biomarker profiles for disease prediction. To advance these technologies, international multidisciplinary, multi-stakeholder collaboration is essential.
  •  
16.
  • Bos, I., et al. (författare)
  • The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants. Methods: Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (A beta) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling. Results: We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage A beta+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE e4 allele was more frequent amongst A beta+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p< 0.001). A beta+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups. Conclusions: The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of A beta and APOE epsilon 4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.
  •  
17.
  •  
18.
  • Kiddle, SJ, et al. (författare)
  • Plasma protein biomarkers of Alzheimer's disease endophenotypes in asymptomatic older twins: early cognitive decline and regional brain volumes
  • 2015
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 5, s. e584-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is great interest in blood-based markers of Alzheimer’s disease (AD), especially in its pre-symptomatic stages. Therefore, we aimed to identify plasma proteins whose levels associate with potential markers of pre-symptomatic AD. We also aimed to characterise confounding by genetics and the effect of genetics on blood proteins in general. Panel-based proteomics was performed using SOMAscan on plasma samples from TwinsUK subjects who are asymptomatic for AD, measuring the level of 1129 proteins. Protein levels were compared with 10-year change in CANTAB-paired associates learning (PAL; n=195), and regional brain volumes (n=34). Replication of proteins associated with regional brain volumes was performed in 254 individuals from the AddNeuroMed cohort. Across all the proteins measured, genetic factors were found to explain ~26% of the variability in blood protein levels on average. The plasma level of the mitogen-activated protein kinase (MAPK) MAPKAPK5 protein was found to positively associate with the 10-year change in CANTAB-PAL in both the individual and twin difference context. The plasma level of protein MAP2K4 was found to suggestively associate negatively (Q<0.1) with the volume of the left entorhinal cortex. Future studies will be needed to assess the specificity of MAPKAPK5 and MAP2K4 to eventual conversion to AD.
  •  
19.
  • Startin, C. M., et al. (författare)
  • Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease
  • 2019
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDown syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer's disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid- peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS).MethodsWe used ultrasensitive assays to compare plasma concentrations of the amyloid- peptides A(40) and A(42), total tau (t-tau), and the cytokines IL1, IL10, IL6, and TNF between adults with DS (n=31), adults with sAD (n=27), and controls age-matched to the group with DS (n=27), and explored relationships between molecular concentrations and with age within each group. In the group with DS, we also explored relationships with neurofilament light (NfL) concentration, due to its potential use as a biomarker for AD in DS.ResultsA(40), A(42), and IL1 concentrations were higher in DS, with a higher A(42)/A(40) ratio in controls. The group with DS showed moderate positive associations between concentrations of t-tau and both A(42) and IL1. Only NfL concentration in the group with DS showed a significant positive association with age.ConclusionsConcentrations of A(40) and A(42) were much higher in adults with DS than in other groups, reflecting APP gene triplication, while no difference in the A(42)/A(40) ratio between those with DS and sAD may indicate similar processing and deposition of A(40) and A(42) in these groups. Higher concentrations of IL1 in DS may reflect an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the positive association between IL1 and t-tau in DS may indicate IL1 is associated with neurodegeneration. Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing clinical intervention studies.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy