SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mörgelin M.) srt2:(2015-2019)"

Sökning: WFRF:(Mörgelin M.) > (2015-2019)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elezagic, D., et al. (författare)
  • Antimicrobial peptides derived from the cartilage.-specific C-type Lectin Domain Family 3 Member A (CLEC3A) – potential in the prevention and treatment of septic arthritis
  • 2019
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584.
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate the antimicrobial activity of peptides derived from C-type Lectin Domain Family 3 Member A (CLEC3A), shed light on the mechanism of antimicrobial activity and assess their potential application in prevention and treatment of septic arthritis. Design: We performed immunoblot to detect CLEC3A peptides in human cartilage extracts. To investigate their antimicrobial activity, we designed peptides and recombinantly expressed CLEC3A domains and used them to perform viable count assays using E.coli, P.aeruginosa and S.aureus. We investigated the mechanism of their antimicrobial activity by fluorescence and scanning electron microscopy, performed ELISA-style immunoassays and transmission electron microscopy to test for lipopolysaccharide binding and surface plasmon resonance to test for lipoteichoic acid (LTA) binding. We coated CLEC3A peptides on titanium, a commonly used prosthetic material, and performed fluorescence microscopy to quantify bacterial adhesion. Moreover, we assessed the peptides’ cytotoxicity against primary human chondrocytes using MTT cell viability assays. Results: CLEC3A fragments were detected in human cartilage extracts. Moreover, bacterial supernatants lead to fragmentation of recombinant and cartilage-derived CLEC3A. CLEC3A-derived peptides killed E.coli, P.aeruginosa and S.aureus, permeabilized bacterial membranes and bound lipopolysaccharide and LTA. Coating CLEC3A antimicrobial peptides (AMPs) on titanium lead to significantly reduced bacterial adhesion to the material. In addition, microbicidal concentrations of CLEC3A peptides in vitro displayed no direct cytotoxicity against primary human chondrocytes. Conclusions: We identify cartilage-specific AMPs originating from CLEC3A, resolve the mechanism of their antimicrobial activity and point to a novel approach in the prevention and treatment of septic arthritis using potent, non-toxic, AMPs.
  •  
2.
  • Eriksson, S., et al. (författare)
  • Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis
  • 2017
  • Ingår i: British Journal of Dermatology. - : Oxford University Press (OUP). - 0007-0963. ; 117:2, s. 513-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Atopic dermatitis (AD) is characterized by an increased susceptibility to skin infections. Staphylococcus aureus is reported to dominate in AD lesions and reports have revealed the presence of staphylococcal biofilms. These infections contribute to aggravation of the eczema. Sodium hypochlorite is known to reduce bacterial load of skin lesions, as well as disease severity, in patients with AD, but the effect on biofilms is unknown. Objectives: To investigate the antimicrobial and antibiofilm effects of sodium hypochlorite against S. aureus isolates derived from patients with AD. Methods: Skin biopsies derived from patients with infected AD were examined by scanning electron microscopy (SEM). Using radial diffusion assays, biofilm assays and confocal laser scanning microscopy, we assessed the effect of sodium hypochlorite on S. aureus isolates derived from lesional skin of patients with AD. Results: SEM revealed clusters of coccoid bacteria embedded in fibrin and extracellular substances at the skin of a patient with infected AD. At concentrations of 0·01-0·08%, sodium hypochlorite showed antibacterial effects against planktonic cells. Eradication of S. aureus biofilms in vitro was observed in concentrations ranging from 0·01% to 0·16%. Confocal laser scanning microscopy confirmed these results. Finally, when human AD skin was subjected to sodium hypochlorite in an ex vivo model, a dose of 0·04% reduced the bacteria derived from AD skin. Conclusions: Sodium hypochlorite has antimicrobial and antibiofilm effects against clinical S. aureus isolates. Our findings suggest usage of a higher concentration than currently used in bleach baths of patients with skin-infected AD.
  •  
3.
  • Abdillahi, Suado M., et al. (författare)
  • Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity
  • 2018
  • Ingår i: Journal of Immunology. - : AMER ASSOC IMMUNOLOGISTS. - 0022-1767 .- 1550-6606. ; 201:3, s. 1007-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.
  •  
4.
  • Abdillahi, Suado M, et al. (författare)
  • The Pulmonary Extracellular Matrix Is a Bactericidal Barrier Against Haemophilus influenzae in Chronic Obstructive Pulmonary Disease (COPD) : Implications for an in vivo Innate Host Defense Function of Collagen VI
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human commensal commonly residing in the nasopharynx of preschool children. It occasionally causes upper respiratory tract infection such as acute otitis media, but can also spread to the lower respiratory tract causing bronchitis and pneumonia. There is increasing recognition that NTHi has an important role in chronic lower respiratory tract inflammation, particularly in persistent infection in patients suffering from chronic obstructive pulmonary disease (COPD). Here, we set out to assess the innate protective effects of collagen VI, a ubiquitous extracellular matrix component, against NTHi infection in vivo. In vitro, collagen VI rapidly kills bacteria through pore formation and membrane rupture, followed by exudation of intracellular content. This effect is mediated by specific binding of the von Willebrand A (VWA) domains of collagen VI to the NTHi surface adhesins protein E (PE) and Haemophilus autotransporter protein (Hap). Similar observations were made in vivo specimens from murine airways and COPD patient biopsies. NTHi bacteria adhered to collagen fibrils in the airway mucosa and were rapidly killed by membrane destabilization. The significance in host-pathogen interplay of one of these molecules, PE, was highlighted by the observation that it confers partial protection from bacterial killing. Bacteria lacking PE were more prone to antimicrobial activity than NTHi expressing PE. Altogether the data shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.
  •  
5.
  • Bettoni, Serena, et al. (författare)
  • C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections
  • 2019
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation (ASCI). - 2379-3708. ; 4:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Gonorrhea is a sexually transmitted infection with 87 million new cases per year globally. Increasing antibiotic resistance has severely limited treatment options. A mechanism that Neisseria gonorrhoeae uses to evade complement attack is binding of the complement inhibitor C4b-binding protein (C4BP). We screened 107 porin B1a (PorB1a) and 83 PorB1b clinical isolates randomly selected from a Swedish strain collection over the last 10 years and noted that 96/107 (89.7%) PorB1a and 16/83 (19.3%) PorB1b bound C4BP; C4BP binding substantially correlated with the ability to evade complement-dependent killing (r = 0.78). We designed 2 chimeric proteins that fused C4BP domains to the backbone of IgG or IgM (C4BP-IgG; C4BP-IgM) with the aim of enhancing complement activation and killing of gonococci. Both proteins bound gonococci (KD C4BP-IgM = 2.4 nM; KD C4BP-IgG 980.7 nM), but only hexameric C4BP-IgM efficiently outcompeted heptameric C4BP from the bacterial surface, resulting in enhanced complement deposition and bacterial killing. Furthermore, C4BP-IgM substantially attenuated the duration and burden of colonization of 2 C4BP-binding gonococcal isolates but not a non-C4BP-binding strain in a mouse vaginal colonization model using human factor H/C4BP-transgenic mice. Our preclinical data present C4BP-IgM as an adjunct to conventional antimicrobials for the treatment of gonorrhea.
  •  
6.
  • Ermert, David, et al. (författare)
  • Human igg increases virulence of streptococcus pyogenes through complement evasion
  • 2018
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 200:10, s. 3495-3505
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes is an exclusively human pathogen that can provoke mild skin and throat infections but can also cause fatal septicemia. This gram-positive bacterium has developed several strategies to evade the human immune system, enabling S. pyogenes to survive in the host. These strategies include recruiting several human plasma proteins, such as the complement inhibitor, C4b-binding protein (C4BP), and human (hu)-IgG through its Fc region to the bacterial surface to evade immune recognition. We identified a novel virulence mechanism whereby IgG-enhanced binding of C4BP to five of 12 tested S. pyogenes strains expressed diverse M proteins that are important surface-expressed virulence factors. Importantly, all strains that bound C4BP in the absence of IgG bound more C4BP when IgG was present. Further studies with an M1 strain that additionally expressed protein H, also a member of the M protein family, revealed that binding of hu-IgG Fc to protein H increased the affinity of protein H for C4BP. Increased C4BP binding accentuated complement downregulation, resulting in diminished bacterial killing. Accordingly, mortality from S. pyogenes infection in hu-C4BP transgenic mice was increased when hu-IgG or its Fc portion alone was administered concomitantly. Electron microscopy analysis of human tissue samples with necrotizing fasciitis confirmed increased C4BP binding to S. pyogenes when IgG was present. Our findings provide evidence of a paradoxical function of hu-IgG bound through Fc to diverse S. pyogenes isolates that increases their virulence and may counteract the beneficial effects of IgG opsonization.
  •  
7.
  • Ermert, David, et al. (författare)
  • The molecular basis of human igg-mediated enhancement of C4b-binding protein recruitment to group a streptococcus
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes infects over 700 million people worldwide annually. Immune evasion strategies employed by the bacteria include binding of the complement inhibitors, C4b-binding protein (C4BP) and Factor H in a human-specific manner. We recently showed that human IgG increased C4BP binding to the bacterial surface, which promoted streptococcal immune evasion and increased mortality in mice. We sought to identify how IgG promotes C4BP binding to Protein H, a member of the M protein family. Dimerization of Protein H is pivotal for enhanced binding to human C4BP. First, we illustrated that Protein H, IgG, and C4BP formed a tripartite complex. Second, surface plasmon resonance revealed that Protein H binds IgG solely through Fc, but not Fab domains, and with high affinity (IgG-Protein H: KD = 0.4 nM; IgG-Fc-Protein H: KD ≤1.6 nM). Each IgG binds two Protein H molecules, while up to six molecules of Protein H bind one C4BP molecule. Third, interrupting Protein H dimerization either by raising temperature to 41°C or with a synthetic peptide prevented IgG-Protein H interactions. IgG-Fc fragments or monoclonal human IgG permitted maximal C4BP binding when used at concentrations from 0.1 to 10 mg/ml. In contrast, pooled human IgG enhanced C4BP binding at concentrations up to 1 mg/ml; decreased C4BP binding at 10 mg/ml occurred probably because of Fab-streptococcal interactions at these high IgG concentrations. Taken together, our data show how S. pyogenes exploits human IgG to evade complement and enhance its virulence. Elucidation of this mechanism could aid design of new therapeutics against S. pyogenes.
  •  
8.
  • Gela, Anele, et al. (författare)
  • Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases
  • 2015
  • Ingår i: Allergy. - : Wiley. - 1398-9995 .- 0105-4538. ; 70:2, s. 161-170
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDuring bacterial infections of the airways, a Th1-profiled inflammation promotes the production of several host defense proteins and peptides with antibacterial activities including -defensins, ELR-negative CXC chemokines, and the cathelicidin LL-37. These are downregulated by Th2 cytokines of the allergic response. Instead, the eosinophil-recruiting chemokines eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 are expressed. This study set out to investigate whether these chemokines could serve as innate host defense molecules during allergic inflammation. MethodsAntibacterial activities of the eotaxins were investigated using viable count assays, electron microscopy, and methods assessing bacterial permeabilization. Fragments generated by mast cell proteases were characterized, and their potential antibacterial, receptor-activating, and lipopolysaccharide-neutralizing activities were investigated. ResultsCCL11, CCL24, and CCL26 all showed potent bactericidal activity, mediated through membrane disruption, against the airway pathogens Streptococcus pneumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa. CCL26 retained bactericidal activity in the presence of salt at physiologic concentrations, and the region holding the highest bactericidal activity was the cationic and amphipathic COOH-terminus. Proteolysis of CCL26 by chymase and tryptase, respectively, released distinct fragments of the COOH- and NH2-terminal regions. The COOH-terminal fragment retained antibacterial activity while the NH2-terminal had potent LPS-neutralizing properties in the order of CCL26 full-length protein. An identical fragment to NH2-terminal fragment generated by tryptase was obtained after incubation with supernatants from activated mast cells. None of the fragments activated the CCR3-receptor. ConclusionsTaken together, the findings show that the eotaxins can contribute to host defense against common airway pathogens and that their activities are modulated by mast cell proteases.
  •  
9.
  • M Abdillahi, Suado, et al. (författare)
  • Collagen VI Is Upregulated in COPD and Serves Both as an Adhesive Target and a Bactericidal Barrier for Moraxella catarrhalis.
  • 2015
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 7:5, s. 506-517
  • Tidskriftsartikel (refereegranskat)abstract
    • Moraxella catarrhalis is a Gram-negative human mucosal commensal and pathogen. It is a common cause of exacerbation in chronic obstructive pulmonary disease (COPD). During the process of infection, host colonization correlates with recognition of host molecular patterns. Importantly, in COPD patients with compromised epithelial integrity the underlying extracellular matrix is exposed and provides potential adhesive targets. Collagen VI is a ubiquitous fibrillar component in the airway mucosa and has been attributed both adhesive and killing properties against Gram-positive bacteria. However, less is known regarding Gram-negative microorganisms. Therefore, in the present study, the interaction of M. catarrhalis with collagen VI was characterized. We found that collagen VI is upregulated in the airways of COPD patients and exposed upon epithelial desquamation. Ex vivo, we inoculated airway biopsies and fibroblasts from COPD patients with M. catarrhalis. The bacteria specifically adhered to collagen VI-containing matrix fibrils. In vitro, purified collagen VI microfibrils bound to bacterial surface structures. The primary adhesion target was mapped to the collagen VI α2-chain. Upon exposure to collagen VI, bacteria were killed by membrane destabilization in physiological conditions. These previously unknown properties of collagen VI provide novel insights into the extracellular matrix innate immunity by quickly entrapping and killing pathogen intruders. © 2015 S. Karger AG, Basel.
  •  
10.
  • Naudin, Clément, et al. (författare)
  • Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes.
  • 2015
  • Ingår i: Thrombosis and Haemostasis. - 0340-6245. ; 114:4, s. 717-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of thrombin is a critical determinant in many physiological and pathological processes including haemostasis and inflammation. Under physiological conditions many of these functions are involved in wound healing or eradication of an invading pathogen. However, when activated systemically, thrombin can contribute to severe and life-threatening conditions by causing complications such as multiple multi-organ failure and disseminated intravascular coagulation. In the present study we investigated how the activity of thrombin is modulated when it is bound to the surface of Streptococcus pyogenes. Our data show that S. pyogenes bacteria become covered with a proteinaceous layer when incubated with human plasma, and that thrombin is a constituent of this layer. Though the coagulation factor is found attached to the bacteria with a functional active site, thrombin has lost its capacity to interact with its natural substrates and inhibitors. Thus, the interaction of bacteria with human plasma renders thrombin completely inoperable at the streptococcal surface. This could represent a host defense mechanism to avoid systemic activation of coagulation which could be otherwise induced when bacteria enter the circulation and cause systemic infection.
  •  
11.
  • Purhonen, J, et al. (författare)
  • Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 957-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial disorders are among the most prevalent inborn errors of metabolism but largely lack treatments and have poor outcomes. High-fat, low-carbohydrate ketogenic diets (KDs) have shown beneficial effects in mouse models of mitochondrial myopathies, with induction of mitochondrial biogenesis as the suggested main mechanism. We fed KD to mice with respiratory chain complex III (CIII) deficiency and progressive hepatopathy due to mutated BCS1L, a CIII assembly factor. The mutant mice became persistently ketotic and tolerated the KD for up to 11 weeks. Liver disease progression was attenuated by KD as shown by delayed fibrosis, reduced cell death, inhibition of hepatic progenitor cell response and stellate cell activation, and normalization of liver enzyme activities. Despite no clear signs of increased mitochondrial biogenesis in the liver, CIII assembly and activity were improved and mitochondrial morphology in hepatocytes normalized. Induction of hepatic glutathione transferase genes and elevated total glutathione level were normalized by KD. Histological findings and transcriptome changes indicated modulation of liver macrophage populations by the mutation and the diet. These results reveal a striking beneficial hepatic response to KD in mice with mitochondrial hepatopathy and warrant further investigations of dietary modification in the management of these conditions in patients.
  •  
12.
  • Stjärne Aspelund, A., et al. (författare)
  • Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa
  • 2016
  • Ingår i: Journal of Hospital Infection. - : Elsevier BV. - 0195-6701. ; 94:1, s. 13-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pseudomonas aeruginosa may colonize water systems via biofilm formation. In hospital environments, contaminated sinks have been associated with nosocomial transmission. Here we describe a prolonged outbreak of a metallo-β-lactamase-producing P. aeruginosa (Pae-MBL) associated with sink drains, and propose a previously unreported decontamination method with acetic acid. Aim To describe a nosocomial outbreak of Pae-MBL associated with hospital sink drains and to evaluate acetic acid as a decontamination method. Methods The outbreak was investigated by searching the microbiology database, microbiological sampling and strain typing. Antibacterial and antibiofilm properties of acetic acid were evaluated in vitro. Pae-MBL-positive sinks were treated with 24% acetic acid once weekly and monitored with repeated cultures. Findings Fourteen patients with positive cultures for Pae-MBL were identified from 2008 to 2014. The patients had been admitted to three wards, where screening discovered Pae-MBL in 12 sink drains located in the patient bathrooms. Typing of clinical and sink drain isolates revealed identical or closely related strains. Pae-MBL biofilm was highly sensitive to acetic acid with a minimum biofilm eradication concentration of 0.75% (range: 0.19–1.5). Weekly treatment of colonized sink drains with acetic acid resulted in negative cultures and terminated transmission. Conclusion Acetic acid is highly effective against Pae-MBL biofilms, and may be used as a simple method to decontaminate sink drains and to prevent nosocomial transmission.
  •  
13.
  • Tati, Ramesh, et al. (författare)
  • Biological wound matrices with native dermis-like collagen efficiently modulate protease activity
  • 2018
  • Ingår i: Journal of Wound Care. - : Mark Allen Group. - 0969-0700 .- 2052-2916. ; 27:4, s. 199-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: When the delicate balance between catabolic and anabolic processes is disturbed for any reason, the healing process can stall, resulting in chronic wounds. In chronic wound pathophysiology, proteolytic imbalance is implicated due to elevated protease levels mediating tissue damage. Hence, it is important to design appropriate wound treatments able to control and modulate protease activity directly at the host/biomaterial interface. Here, we investigate collagen-based wound dressings with the focus on their potential to adsorb and inactivate tissue proteases. Method: We examined the effect of six collagen-based dressings on their ability to adsorb and inactivate different granulocyte proteases, plasmin, human neutrophil elastase (HLE), and matrix metalloproteases (MMP)-1, -2, -8, and -9, by an integrated approach including immunoelectron microscopy. Results: We observed a reduction of the proteolytic activities of plasmin, HLE, and MMP-1, -2, -8, and -9, both on the biomaterial surface and in human chronic wound fluid. The most pronounced effect was observed in collagen-based dressings, with the highest content of native collagen networks resembling dermis structures. Conclusion: Our data suggest that this treatment strategy might be beneficial for the chronic wound environment, with the potential to promote improved wound healing. Declaration of interest: The authors have no conflicts of interest with the contents of this article. This work was supported by grants from the Swedish Research Council (project 7480), the Swedish Foundation for Strategic Research (K2014-56X-13413-15-3), the Foundations of Crafoord, Johan and Greta Kock, Alfred Österlund, King Gustav V Memorial Fund, and the Medical Faculty at Lund University.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy