SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Madden Suzanne C.) srt2:(2022)"

Sökning: WFRF:(Madden Suzanne C.) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
2.
  • Gao, Yulong, et al. (författare)
  • The molecular gas resolved by ALMA in the low-metallicity merging dwarf galaxy Haro 11
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 661
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The physical mechanisms driving starbursts and quenching in less massive (M* ≤ 1010 M⊙) galaxies are unclear. The merger is one of the inescapable processes referred to as both starburst and quenching in massive galaxies. However, the effects of the merger on star formation in dwarf galaxies and their evolution are still uncertain.Aims. We aim to explore how star formation in dwarf galaxies is both triggered and quenched by studying metal-poor gas-rich dwarf mergers based on multi-band observations at a spatial resolution of ∼460 pc.Methods. We use archival data of Atacama Large Millimetre Array (Band 3 and 8) and Very Large Telescope/Multi Unit Spectroscopic Explorer to map CO(J = 1–0), [CI](3P1–3P0), and Hα emission in one of the most extreme merging starburst dwarf galaxies, Haro 11.Results. We find the molecular gas is assembled around the central two star-forming regions (knots B and C). The molecular and ionized gas and stellar components show complex kinematics, indicating that the gas is probably at a combined stage of collision of clouds and feedback from star formation. The peak location and distribution of [CI](1–0) closely coincide with the CO(1–0) emission, meaning that it might trace the same molecular gas as CO in such a dwarf merger starburst galaxy. The enhancement of line ratios (∼0.5) of [CI]/CO around knot C is probably generated by the dissociation of CO molecules by cosmic rays and far-ultraviolet photons. Globally, Haro 11 and its star-forming regions share similar star formation efficiency (SFE) to the high-z starburst galaxies or the clumps in nearby ultraluminous infrared galaxies.Conclusions. Given the high SFE, the high specific star formation rate, small stellar mass, low metallicity, and deficient HI gas, Haro 11 could be an analog of a high-z dwarf starburst and the potential progenitor of the nearby less massive elliptical galaxies. The significantly smaller turbulent pressure and viral parameter is probably triggering the intense starbursts. We predict that Haro 11 will quench at M* ≤ 8.5  ×  109 M⊙.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy