SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malusek Alexandr) srt2:(2020-2023)"

Sökning: WFRF:(Malusek Alexandr) > (2020-2023)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman, Ann-Sofi, et al. (författare)
  • Spectral photon-counting CT: Image quality evaluation using a metal-containing bovine bone specimen
  • 2023
  • Ingår i: European Journal of Radiology. - : ELSEVIER IRELAND LTD. - 0720-048X .- 1872-7727. ; 168
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To find the optimal imaging parameters for a photon-counting detector CT (PCD-CT) and to compare it to an energy-integrating detector CT (EID-CT) in terms of image quality and metal artefact severity using a metal-containing bovine knee specimen. Methods: A bovine knee with a stainless-steel plate and screws was imaged in a whole-body research PCD-CT at 120 kV and 140 kV and in an EID dual-source CT (DSCT) at Sn150 kV and 80/Sn150 kV. PCD-CT virtual monoenergetic 72 and 150 keV images and EID-CT images processed with and without metal artefact reduction algorithms (iMAR) were compared. Four radiologists rated the visualisation of bony structures and metal artefact severity. The Friedman test and Wilcoxon signed-rank test with Bonferronis correction were used. P-values of <= 0.0001 were considered statistically significant. Distributions of HU values of regions of interest (ROIs) in artefact-affected areas were analysed.Results: PCD-CT 140 kV 150 keV images received the highest scores and were significantly better than EID-CT Sn150 kV images. PCD-CT 72 keV images were rated significantly lower than all the others. HU-value variation was larger in the 120 kV and the 72 keV images. The ROI analysis revealed no large difference between scanners regarding artefact severity.Conclusion: PCD-CT 140 kV 150 keV images of a metal-containing bovine knee specimen provided the best image quality. They were superior to, or as good as, the best EID-CT images; even without the presumed advantage of tin filter and metal artefact reduction algorithms. PCD-CT is a promising method for reducing metal artefacts.
  •  
2.
  • Jeuthe, Julius, et al. (författare)
  • Semi-Automated 3D Segmentation of Pelvic Region Bones in CT Volumes for the Annotation of Machine Learning Datasets
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 172-176
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic segmentation of bones in computed tomography (CT) images is used for instance in beam hardening correction algorithms where it improves the accuracy of resulting CT numbers. Of special interest are pelvic bones, which—because of their strong attenuation—affect the accuracy of brachytherapy in this region. This work evaluated the performance of the JJ2016 algorithm with the performance of MK2014v2 and JS2018 algorithms; all these algorithms were developed by authors. Visual comparison, and, in the latter case, also Dice similarity coefficients derived from the ground truth were used. It was found that the 3D-based JJ2016 performed better than the 2D-based MK2014v2, mainly because of the more accurate hole filling that benefitted from information in adjacent slices. The neural network-based JS2018 outperformed both traditional algorithms. It was, however, limited to the resolution of 1283 owing to the limited amount of memory in the graphical processing unit (GPU).
  •  
3.
  • Kaveckyte, Vaiva, 1991- (författare)
  • Development of Experimental Brachytherapy Dosimetry Using Monte Carlo Simulations for Detector Characterization
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brachytherapy (BT) is a type of interventional radiotherapy that is advantageous due to high absorbed dose conformity and possibility to deliver high dose in few fractions. It is often used for prostate and gynecological tumors as monotherapy or a boost alongside external beam radiotherapy (EBRT). However, there is a number of things that can compromise treatment delivery, starting from incorrect source data in a treatment planning system to malfunctioning of a treatment delivery unit. None of the established quality assurance (QA) procedures emulate treatment delivery where the planned dose could be compared with the experimentally determined value. While such practices are employed in EBRT, BT suffers from the lack of detectors that would be water-equivalent and convenient to use for regular measurements. First-choice thermoluminescence dosimeters are water-equivalent but have passive readout. Sporadic attempts to use other detectors have not led to any established practices at clinical sites. Stepping ahead, the safety of treatment delivery could be further evaluated using real-time in vivo dosimetry. If detectors were characterized with high-accuracy, a reliable error detection level could be set to terminate treatments if needed. Contrary to in-phantom QA, there are detectors suitable for such applications but their characterization is incomplete. In this thesis we address both problems.Focusing on high-dose-rate 192Ir remote afterloading treatments, which are among the most common in BT, we investigate and propose a direct readout synthetic diamond detector for in-phantom QA of treatment units. The detector was designed for small-field high-energy EBRT dosimetry but our findings demonstrate its suitability for BT dosimetry. Additionally, due to detector calibration with traceability to absorbed dose to water primary standards of high-energy photon beams and combined experimental and Monte Carlo (MC) characterization, the uncertainties in absorbed dose to water were comparable to passive readout detectors and lower than for other direct readout detectors. We complemented detector investigation with a theoretical study on diamond material properties and which values (mass density, mean excitation energy, number of conduction electrons per atom) shall be used for the most faithful description of ionizing radiation interactions in diamond for MC simulations and calculations of mass electronic stopping power. The findings improve diamond dosimetry accuracy, and subsequently, experimental dosimetry of not only BT but all radiotherapy beam qualities where the detectors are used.Aiming to further contribute to experimental BT dosimetry, we focused on high atomic number inorganic scintillators used for in vivo dosimetry: ZnSe, CsI, and Al2O3. These are already existing dosimeters exhibiting promising luminescence properties, but until now, their investigation has been solely experimental. MC simulations are not subject to detector positioning uncertainties which are high due to steep dose gradients and other detector response artifacts, thus we used the method to investigate the absorbed-dose energy response of detectors, its dependence on radial distance and polar angles, scatter conditions, as well as detector design. We clarified how error-prone high atomic number detector characterization might be if experimental and MC methods are not combined. Both have certain limitations and have to complement each other.Though the thesis addresses two different types of detectors for two different applications, the underlying theme is to understand the detector at hand. The use of MC simulations allowed introducing a new synthetic diamond detector into BT field and improving accuracy of in vivo dosimetry systems using inorganic scintillators. We also raised awareness to the lack of unified detector calibration and characterization practice in BT dosimetry.
  •  
4.
  • Kaveckyte, Vaiva, et al. (författare)
  • Investigation of a synthetic diamond detector response in kilovoltage photon beams
  • 2020
  • Ingår i: Medical physics (Lancaster). - : Wiley-Blackwell Publishing Inc.. - 0094-2405 .- 2473-4209. ; 47:3, s. 1268-1279
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose An important characteristic of radiation dosimetry detectors is their energy response which consists of absorbed-dose and intrinsic energy responses. The former can be characterized using Monte Carlo (MC) simulations, whereas the latter (i.e., detector signal per absorbed dose to detector) is extracted from experimental data. Such a characterization is especially relevant when detectors are used in nonrelative measurements at a beam quality that differs from the calibration beam quality. Having in mind the possible application of synthetic diamond detectors (microDiamond PTW 60019, Freiburg, Germany) for nonrelative dosimetry of low-energy brachytherapy (BT) beams, we determined their intrinsic and absorbed-dose energy responses in 25-250 kV beams relative to a Co-60 beam, which is usually the reference beam quality for detector calibration in radiotherapy. Material and Methods Three microDiamond detectors and, for comparison, two silicon diodes (PTW 60017) were calibrated in terms of air-kerma free in air in six x-ray beam qualities (from 25 to 250 kV) and in terms of absorbed dose to water in a Co-60 beam at the national metrology laboratory in Sweden. The PENELOPE/penEasy MC radiation transport code was used to calculate the absorbed-dose energy response of the detectors (modeled based on blueprints) relative to air and water depending on calibration conditions. The MC results were used to extract the relative intrinsic energy response of the detectors from the overall energy response. Measurements using an independent setup with a single ophthalmic BEBIG I25.S16 I-125 BT seed (effective photon energy of 28 keV) were used as a qualitative check of the extracted intrinsic energy response correction factors. Additionally, the impact of the thickness of the active volume as well as the presence of extra-cameral components on the absorbed-dose energy response of a microDiamond detector was studied using MC simulations. Results The relative intrinsic energy response of the microDiamond detectors was higher by a factor of 2 in 25 and 50 kV beams compared to the Co-60 beam. The variation in the relative intrinsic energy response of silicon diodes was within 10% over the investigated photon energy range. The use of relative intrinsic energy response correction factors improved the agreement among the absorbed dose to water values determined using microDiamond detectors and silicon diodes, as well as with the TG-43 formalism-based calculations for the I-125 seed. MC study of microDiamond detector design features provided a possible explanation for inter-detector response variation at low-energy photon beams by differences in the effective thickness of the active volume. Conclusions MicroDiamond detectors had a non-negligible variation in the relative intrinsic energy response (factor of 2) which was comparable to that in the absorbed-dose energy response relative to water at low-energy photon beams. Silicon diodes, in contrast, had an absorbed-dose energy dependence on photon energy that varied by a factor of 6, whereas the intrinsic energy dependence on beam quality was within 10%. It is important to decouple these two responses for a full characterization of detector energy response especially when the user and reference beam qualities differ significantly, and MC alone is not enough.
  •  
5.
  • Klintström, Benjamin, et al. (författare)
  • Photon-counting detector CT and energy-integrating detector CT for trabecular bone microstructure analysis of cubic specimens from human radius
  • 2022
  • Ingår i: European radiology experimental. - : Springer Nature. - 2509-9280. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background As bone microstructure is known to impact bone strength, the aim of this in vitro study was to evaluate if the emerging photon-counting detector computed tomography (PCD-CT) technique may be used for measurements of trabecular bone structures like thickness, separation, nodes, spacing and bone volume fraction. Methods Fourteen cubic sections of human radius were scanned with two multislice CT devices, one PCD-CT and one energy-integrating detector CT (EID-CT), using micro-CT as a reference standard. The protocols for PCD-CT and EID-CT were those recommended for inner- and middle-ear structures, although at higher mAs values: PCD-CT at 450 mAs and EID-CT at 600 (dose equivalent to PCD-CT) and 1000 mAs. Average measurements of the five bone parameters as well as dispersion measurements of thickness, separation and spacing were calculated using a three-dimensional automated region growing (ARG) algorithm. Spearman correlations with micro-CT were computed. Results Correlations with micro-CT, for PCD-CT and EID-CT, ranged from 0.64 to 0.98 for all parameters except for dispersion of thickness, which did not show a significant correlation (p = 0.078 to 0.892). PCD-CT had seven of the eight parameters with correlations rho > 0.7 and three rho > 0.9. The dose-equivalent EID-CT instead had four parameters with correlations rho > 0.7 and only one rho > 0.9. Conclusions In this in vitro study of radius specimens, strong correlations were found between trabecular bone structure parameters computed from PCD-CT data when compared to micro-CT. This suggests that PCD-CT might be useful for analysing bone microstructure in the peripheral human skeleton.
  •  
6.
  • Magnusson, Maria, 1961-, et al. (författare)
  • ACCURACY OF CT NUMBERS OBTAINED BY DIRA AND MONOENERGETIC PLUS ALGORITHMS IN DUAL-ENERGY COMPUTED TOMOGRAPHY
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 212-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-energy computed tomography (CT) can be used in radiotherapy treatment planning for the calculation of absorbed dose distributions. The aim of this work is to evaluate whether there is room for improvement in the accuracy of the Monoenergetic Plus algorithm by Siemens Healthineers. A Siemens SOMATOM Force scanner was used to scan a cylindrical polymethyl methacrylate phantom with four rod-inserts made of different materials. Images were reconstructed using ADMIRE and processed with Monoenergetic Plus. The resulting CT numbers were compared with tabulated values and values simulated by the proof-of-a-concept algorithm DIRA developed by the authors. Both the Monoenergetic Plus and DIRA algorithms performed well; the accuracy of attenuation coefficients was better than about ±1% at the energy of 70 keV. Compared with DIRA, the worse performance of Monoenergetic Plus was caused by its (i) two-material decomposition to iodine and water and (ii) imperfect suppression of the beam hardening artifact in ADMIRE.
  •  
7.
  • Magnusson, Maria, 1961-, et al. (författare)
  • On the Choice of Base Materials for Alvarez–Macovski and DIRA Dual-energy Reconstruction Algorithms in CT
  • 2023
  • Ingår i: Photon Counting Computed Tomography. - Cham : Springer. - 9783031260629 - 9783031260612 ; , s. 153-175
  • Bokkapitel (refereegranskat)abstract
    • The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. Resulting inaccuracies may lower their diagnostic value, or if the data are used for radiation treatment planning, the accuracy of such plans. The aim of this work is to investigate how the commonly used (water, bone) (WB), (water, iodine) (WI), and (approximate photoelectric effect, Compton scattering) (PC) doublets affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski (AM) method. The performance of this method is also compared to the performance of the dual-energy iterative reconstruction algorithm DIRA. In both cases, the study is performed using simulations.The results show that the PC and WB doublets accurately predicted the linear attenuation coefficient (LAC) values for human tissues and elements with Z = 1, …, 20, in the 20–150 keV range, though there was a small (<5% discrepancy in the 20–35 keV range. The WI doublet did not represent the tissues as well as PC and WB; the largest discrepancies (>50% in some cases) were in the 20–40 keV range.LACs reconstructed with the AM and DIRA followed this trend. AM produced artifacts when iodine was present in the phantom together with human tissues since AM can only work with one doublet at a time. It was shown that these artifacts could be avoided with DIRA using different doublets at different spatial positions, i.e., WB for soft and bone tissue and WI for the iodine solution.
  •  
8.
  • Magnusson, Maria, 1961-, et al. (författare)
  • Optimal Selection of Base Materials for Accurate Dual-Energy Computed Tomography : Comparison Between the Alvarez–Macovski Method and DIRA
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 218-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. The aim of this work is to investigate how the commonly used bases (water, bone), (water, iodine) and (photoelectric effect, Compton scattering) affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski method. The performance of this method is also compared with the performance of the Dual-energy Iterative Reconstruction Algorithm (DIRA). In both cases, the study is performed using simulations. The results show that the Alvarez–Macovski method produced artefacts when iodine was present in the phantom together with human tissues since this method can only work with one doublet. It was shown that these artefacts could be avoided with DIRA using the (water, bone) doublet for tissues and the (water, iodine) doublet for the iodine solution.
  •  
9.
  • Malusek, Alexandr, 1968-, et al. (författare)
  • On The Possibility To Resolve Gadolinium- And Cerium-Based Contrast Agents From Their CT Numbers In Dual-Energy Computed Tomography
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 225-231
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerium oxide nanoparticles with integrated gadolinium have been proved to be useful as contrast agents in magnetic resonance imaging. Of question is their performance in dual-energy computed tomography. The aims of this work are to determine (1) the relation between the computed tomography number and the concentration of the I, Gd or Ce contrast agent and (2) under what conditions it is possible to resolve the type of contrast agent. Hounsfield values of iodoacetic acid, gadolinium acetate and cerium acetate dissolved in water at molar concentrations of 10, 50 and 100 mM were measured in a water phantom using the Siemens SOMATOM Definition Force scanner; gadolinium- and cerium acetate were used as substitutes for the gadolinium-integrated cerium oxide nanoparticles. The relation between the molar concentration of the I, Gd or Ce contrast agent and the Hounsfield value was linear. Concentrations had to be sufficiently high to resolve the contrast agents.
  •  
10.
  •  
11.
  • Sanchez, Jose Carlos Gonzalez, et al. (författare)
  • Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net
  • 2020
  • Ingår i: Physica medica (Testo stampato). - : Elsevier. - 1120-1797 .- 1724-191X. ; 69, s. 241-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep learning algorithms have improved the speed and quality of segmentation for certain tasks in medical imaging. The aim of this work is to design and evaluate an algorithm capable of segmenting bones in dual-energy CT data sets. A convolutional neural network based on the 3D U-Net architecture was implemented and evaluated using high tube voltage images, mixed images and dual-energy images from 30 patients. The network performed well on all the data sets; the mean Dice coefficient for the test data was larger than 0.963. Of special interest is that it performed better on dual-energy CT volumes compared to mixed images that mimicked images taken at 120 kV. The corresponding increase in the Dice coefficient from 0.965 to 0.966 was small since the enhancements were mainly at the edges of the bones. The method can easily be extended to the segmentation of multi-energy CT data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy