SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Massling A.) srt2:(2020-2023)"

Sökning: WFRF:(Massling A.) > (2020-2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nøjgaard, J. K., et al. (författare)
  • A local marine source of atmospheric particles in the High Arctic
  • 2022
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 285
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of non-refractory submicron aerosol (NR-PM1) was characterized at the Villum Research Station (Villum) at Station Nord in North Greenland during spring-summer 2016 using a Time of Flight Aerosol Chemical Speciation Monitor (ToF-ACSM). The composition is dominated by sulfate (48%) and organic species (40%). Positive Matrix Factorization (PMF) identified three key factors corresponding to a primary hydrocarbon-like organic aerosol (HOA), and two types of secondary organic aerosol: oxygenated organic aerosol (OOA) and a marine organic aerosol (MOA). The HOA factor accounts for 5% of the organic aerosol mass, which is consistent with previous findings at Villum. The OOA factor accounts for 77% of the organic aerosol mass and correlates with accumulation mode particles, which supports previous findings indicating that oxidized organic aerosols are predominantly from long-range transport during winter and spring at Villum. The MOA factor was characterized by mass spectral fragments of methane sulfonic acid (MSA) from atmospheric oxidation of dimethyl sulfide, for which reason the MOA factor is considered to be of biogenic origin. MOA accounts for 18% of the organic aerosol mass and correlates with locally produced Aitken mode particles. This indicates that biogenic processes are not only a significant source of aerosols at Villum, but MOA also appears to be formed in the vicinity of the measurement site. This local geographical origin was confirmed through air mass back trajectory modelling and source-receptor analysis. During May, air masses frequently arrived from the east, with source regions for the MOA factor and therewith MSA located in the Barents Sea and Lincoln Sea with lesser contributions from the Greenland Sea. During June, air mass origin shifted to the west, with source regions for the MOA factor and MSA shifting correspondingly to Baffin Bay and the Canadian Arctic Archipelago. While shifting transport patterns between May and June lead to shifting source regions, sea ice likely played a role as well. During May, marginal ice zones were present in the Barents Sea between Svalbard and Franz Josef Land, while during June, sea ice in the northern part of Baffin Bay retreated and sea ice in the Canadian Arctic Archipelago decreased. Although May and June experienced different transport patterns and sea ice conditions, levels of the MOA factor and MSA were similar between the months. This is likely due to similarities between marine biological activities in the Barents Sea and Baffin Bay. This research highlights the complex relationship between transport patterns, sea ice conditions, and atmospheric particle concentrations. Multiyear aerosol chemical composition from several High Arctic sites is encouraged to determine the full effects of ocean-atmosphere interactions and transport patterns on atmospheric aerosol concentrations.
  •  
2.
  • Sze, K. C. H., et al. (författare)
  • Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 23:8, s. 4741-4761
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-nucleating particles (INPs) can initiate ice formation in clouds at temperatures above - 38 C-? through heterogeneous ice nucleation. As a result, INPs affect cloud microphysical and radiative properties, cloud lifetime, and precipitation behavior and thereby ultimately the Earth's climate. Yet, little is known regarding the sources, abundance and properties of INPs, especially in remote regions such as the Arctic. In this study, 2 -yearlong INP measurements (from July 2018 to September 2020) at Villum Research Station in northern Greenland are presented. A low-volume filter sampler was deployed to collect filter samples for offline INP analysis. An annual cycle of INP concentration (NINP) was observed, and the fraction of heat-labile INPs was found to be higher in months with low to no snow cover and lower in months when the surface was well covered in snow (> 0.8 m). Samples were categorized into three different types based only on the slope of their INP spectra, namely into summer, winter and mix type. For each of the types a temperature-dependent INP parameterization was derived, clearly different depending on the time of the year. Winter and summer types occurred only during their respective seasons and were seen 60 % of the time. The mixed type occurred in the remaining 40 % of the time throughout the year. April, May and November were found to be transition months. A case study comparing April 2019 and April 2020 was performed. The month of April was selected because a significant difference in NINP was observed during these two periods, with clearly higher NINP in April 2020. In parallel to the observed differences in NINP, also a higher cloud-ice fraction was observed in satellite data for April 2020, compared to April 2019. NINP in the case study period revealed no clear dependency on either meteorological parameters or different surface types which were passed by the collected air masses. Overall, the results suggest that the coastal regions of Greenland were the main sources of INPs in April 2019 and 2020, most likely including both local terrestrial and marine sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy