SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mercier R.) srt2:(2020-2024)"

Sökning: WFRF:(Mercier R.) > (2020-2024)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ebersole, Charles R., et al. (författare)
  • Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
  • 2020
  • Ingår i: Advances in Methods and Practices in Psychological Science. - : Sage. - 2515-2467 .- 2515-2459. ; 3:3, s. 309-331
  • Tidskriftsartikel (refereegranskat)abstract
    • Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3-9; median total sample = 1,279.5, range = 276-3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Delta r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00-.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19-.50).
  •  
3.
  • Mercuri, E., et al. (författare)
  • Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study
  • 2020
  • Ingår i: Journal of Comparative Effectiveness Research. - : Becaris Publishing Limited. - 2042-6305 .- 2042-6313. ; 9:5, s. 341-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, multicenter registry providing real-world evidence regarding ataluren use in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). We examined the effectiveness of ataluren + standard of care (SoC) in the registry versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS), DMD genotype-phenotype/-ataluren benefit correlations and ataluren safety. Patients & methods: Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established disease progression predictors (registry cut-off date, 9 July 2018). Results & conclusion: Kaplan-Meier analyses demonstrated that ataluren + SoC significantly delayed age at loss of ambulation and age at worsening performance in timed function tests versus SoC alone (p <= 0.05). There were no DMD genotype-phenotype/ataluren benefit correlations. Ataluren was well tolerated. These results indicate that ataluren + SoC delays functional milestones of DMD progression in patients with nmDMD in routine clinical practice. ClinicalTrials.gov identifier: NCT02369731. ClinicalTrials.gov identifier: NCT02369731.
  •  
4.
  •  
5.
  •  
6.
  • Bousquet, Jean, et al. (författare)
  • ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
  • 2021
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 76:1, s. 168-190
  • Forskningsöversikt (refereegranskat)abstract
    • Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Delva, Pacôme, et al. (författare)
  • GENESIS: co-location of geodetic techniques in space
  • 2023
  • Ingår i: Earth, Planets and Space. - : Springer Science and Business Media LLC. - 1880-5981 .- 1343-8832. ; 75:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Improving and homogenizing time and space reference systems on Earth and, more specifically, realizing the Terrestrial Reference Frame (TRF) with an accuracy of 1 mm and a long-term stability of 0.1 mm/year are relevant for many scientific and societal endeavors. The knowledge of the TRF is fundamental for Earth and navigation sciences. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the positions of continental and island reference stations, such as those located at tide gauges, as well as the ground stations of tracking networks. Also, numerous applications in geophysics require absolute millimeter precision from the reference frame, as for example monitoring tectonic motion or crustal deformation, contributing to a better understanding of natural hazards. The TRF accuracy to be achieved represents the consensus of various authorities, including the International Association of Geodesy (IAG), which has enunciated geodesy requirements for Earth sciences. Moreover, the United Nations Resolution 69/266 states that the full societal benefits in developing satellite missions for positioning and Remote Sensing of the Earth are realized only if they are referenced to a common global geodetic reference frame at the national, regional and global levels. Today we are still far from these ambitious accuracy and stability goals for the realization of the TRF. However, a combination and co-location of all four space geodetic techniques on one satellite platform can significantly contribute to achieving these goals. This is the purpose of the GENESIS mission, a component of the FutureNAV program of the European Space Agency. The GENESIS platform will be a dynamic space geodetic observatory carrying all the geodetic instruments referenced to one another through carefully calibrated space ties. The co-location of the techniques in space will solve the inconsistencies and biases between the different geodetic techniques in order to reach the TRF accuracy and stability goals endorsed by the various international authorities and the scientific community. The purpose of this paper is to review the state-of-the-art and explain the benefits of the GENESIS mission in Earth sciences, navigation sciences and metrology. This paper has been written and supported by a large community of scientists from many countries and working in several different fields of science, ranging from geophysics and geodesy to time and frequency metrology, navigation and positioning. As it is explained throughout this paper, there is a very high scientific consensus that the GENESIS mission would deliver exemplary science and societal benefits across a multidisciplinary range of Navigation and Earth sciences applications, constituting a global infrastructure that is internationally agreed to be strongly desirable. Graphical Abstract: [Figure not available: see fulltext.]
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy