SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naqvi Salman) srt2:(2019)"

Sökning: WFRF:(Naqvi Salman) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Naqvi, Salman Raza, et al. (författare)
  • Pyrolysis of high ash sewage sludge : Kinetics and thermodynamic analysis using Coats-Redfern method
  • 2019
  • Ingår i: Renewable energy. - : Elsevier Ltd. - 0960-1481 .- 1879-0682. ; 131, s. 854-860
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to investigate the thermo-kinetics of high-ash sewage sludge using thermogravimetric analysis. Sewage sludge was dried, pulverized and heated non-isothermally from 25 to 800 °C at different heating rates (5, 10 and 20 °C/min) in N2 atmosphere. TG and DTG results indicate that the sewage sludge pyrolysis may be divided into three stages. Coats-Redfern integral method was applied in the 2nd and 3rd stage to estimate the activation energy and pre-exponential factor from mass loss data using five major reaction mechanisms. The low-temperature stable components (LTSC) of the sewage sludge degraded in the temperature regime of 250–450 °C while high-temperature stable components (HTSC) decomposed in the temperature range of 450–700 °C. According to the results, first-order reaction model (F1) showed higher Ea with better R2 for all heating rates. D3, N1, and S1 produced higher Ea at higher heating rates for LTSC pyrolysis and lower Ea with the increase of heating rates for HTSC pyrolysis. All models showed positive ΔH except F1.5. Among all models, Diffusion (D1, D2, D3) and phase interfacial models (S1, S2) showed higher ΔG as compared to reaction, nucleation, and power-law models in section I and section II.
  •  
2.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Salman, Chaudhary Awais, 1986-, et al. (författare)
  • Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants
  • 2019
  • Ingår i: Energy Procedia. - : Elsevier. - 1876-6102. ; , s. 1323-1329, s. 1323-1329
  • Konferensbidrag (refereegranskat)abstract
    • The anaerobic digestion of biodegradable fraction of municipal solid waste (MSW) is a widely used process for biogas production. However, the biodegradable fraction of MSW also contains lignocellulosic waste which hinders the biogas production if added to the digester in higher quantity. So it needs to be separated from biodegradable waste and sent for alternate treatment, e.g., incineration, landfilling or compositing. Pyrolysis of lignocellulosic waste to produce biochar, syngas, and bio oil is an alternate treatment to consider. Furthermore, there is a reported correlation between the addition of biochar in the digester and higher biogas production. Previously, we coupled the pyrolysis of lignocellulosic waste with anaerobic digestion plant. Pyrolysis produces the biochar and vapors. Biochar was added in the digester to enhance the biomethane production. The vapors produced in the pyrolysis process were converted to biomethane through the catalytic methanation process. The combination gives the overall efficiency of 67%. In this work, we modified the process concept to increase the integration level of these processes. The main issue with the pyrolysis process is its heat required to operate, while some of its downstream processes also generate excess heat. In this study, the pyrolysis of lignocellulosic waste is integrated with an operating combined heat and power (CHP) plant, by using its existing infrastructure for heat transport among different pyrolysis operations. The combustor of the CHP plant provides the heat for drying and pyrolysis while the excess heat is transferred back to the combustor. The biochar produced from pyrolysis is transported back to the digester as an adsorbent. The process simulation results show that the combined efficiency of pyrolysis with CHP plant reached 80%. If the biochar is sent back to the anaerobic digester, the synergetic efficiency of all three processes, i.e., pyrolysis-CHP and anaerobic digestion was obtained at 79.7% as compared with the 67% efficiency when the pyrolysis was only integrated with the anaerobic digestion process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy