SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nava L.) srt2:(2010-2014)"

Sökning: WFRF:(Nava L.) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Longo, F., et al. (författare)
  • Upper limits on the high-energy emission from gamma-ray bursts observed by AGILE-GRID
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 547, s. A95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detection and the characterization of the highenergy emission component from individual gamma-ray bursts (GRBs) is one of the key science objectives of the currently operating gamma-ray satellite AGILE, launched in April 2007. In its first two years of operation AGILE detected three GRBs with photons of energy larger than 30 MeV. One more GRB was detected in AGILE third operation year, while operating in spinning mode. Aims. For the 64 other GRBs localized during the period July 2007 to October 2009 in the field of view of the AGILE Gamma-Ray Imaging Detector (GRID), but not detected by this instrument, we estimate the count and flux upper limits on the GRB high energy emission in the AGILE-GRID energy band (30 MeV-3 GeV). Methods. To calculate the count upper limits, we adopted a Bayesian approach. The flux upper limits are derived using several assumptions on the high-energy spectral behavior. For 28 GRBs with available prompt spectral information, a flux upper limit and the comparison with the expected flux estimated from spectral extrapolation of the Band spectrum to the 30 MeV-3 GeV band are provided. Moreover, upper limits on the flux under the assumption of an extra power law component dominating the 30 MeV-3 GeV band are calculated for all GRBs and considering four different values for the spectral photon index. Finally, we performed a likelihood upper limit on the possible delayed emission up to 1 h after the GRB. Results. The estimated flux upper limits range between 1 × 10 -4 and ∼2 × 10 -2 photons cm -2 s -1 and generally lie above the flux estimated from the extrapolation of the prompt emission in the 30 MeV-3 GeV band. A notable case is GRB 080721, where the AGILE-GRID upper limit suggests a steeper spectral index or the presence of a cut-off in the high energy part of the Band prompt spectrum. The four GRBs detected by AGILE-GRID show high-energy (30 MeV-3 GeV) to low-energy (1 keV-10 MeV) fluence ratios similar to those estimated in this paper for the 64 GRBs without GRID detection, favoring the possibility that AGILE-GRID detected only high-fluence, hard GRBs. From the flux upper limits derived in this work we put some constraint on high-energy radiation from the afterglow emission and from synchrotron self Compton emission in internal shocks.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Khounlotham, Manirath, et al. (författare)
  • Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis
  • 2012
  • Ingår i: Immunity. - Cambridge, United States : Cell Press. - 1074-7613 .- 1097-4180. ; 37:3, s. 563-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice lacking junctional adhesion molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r(-/-)Rag1(-/-) mice to acute colitis. Although negligible contributions of adaptive immunity in F11r(+/+)Rag1(-/-) mice were observed, F11r(-/-)Rag1(-/-) mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-beta-producing CD4(+) T cells in F11r(-/-) mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4(+) T cells and TGF-beta. Absence of IgA in F11r(+/+)Igha(-/-) mice did not affect disease, whereas F11r(-/-)Igha(-/-) mice displayed markedly increased susceptibility to acute injury-induced colitis. These data establish a role for adaptive immune-mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise.
  •  
7.
  • Koch, Stefan, et al. (författare)
  • The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair
  • 2011
  • Ingår i: Gastroenterology. - Maryland Heights, United States : W.B. Saunders Co.. - 0016-5085 .- 1528-0012. ; 141:1, s. 259-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & AimsDkk1 is a secreted antagonist of the Wnt/β-catenin signaling pathway. It is induced by inflammatory cytokines during colitis and exacerbates tissue damage by promoting apoptosis of epithelial cells. However, little is known about the physiologic role of Dkk1 in normal intestinal homeostasis and during wound repair following mucosal injury. We investigated whether inhibition of Dkk1 affects the morphology and function of the adult intestine.MethodsWe used doubleridge mice (Dkk1d/d), which have reduced expression of Dkk1, and an inhibitory Dkk1 antibody to modulate Wnt/β-catenin signaling in the intestine. Intestinal inflammation was induced with dextran sulfate sodium (DSS), followed by a recovery period in which mice were given regular drinking water. Animals were killed before, during, or after DSS administration; epithelial homeostasis and the activity of major signaling pathways were investigated by morphometric analysis, bromo-2′-deoxyuridine incorporation, and immunostaining.ResultsReduced expression of Dkk1 increased proliferation of epithelial cells and lengthened crypts in the large intestine, which was associated with increased transcriptional activity of β-catenin. Crypt extension was particularly striking when Dkk1 was inhibited during acute colitis. Dkk1d/dmice recovered significantly faster from intestinal inflammation but exhibited crypt architectural irregularities and epithelial hyperproliferation compared with wild-type mice. Survival signaling pathways were concurrently up-regulated in Dkk1d/d mice, including the AKT/β-catenin, ERK/Elk-1, and c-Jun pathways.ConclusionsDkk1, an antagonist of Wnt/β-catenin signaling, regulates intestinal epithelial homeostasis under physiologic conditions and during inflammation. Depletion of Dkk1 induces a strong proliferative response that promotes wound repair after colitis.
  •  
8.
  • Nava, Porfirio, et al. (författare)
  • IFN gamma-induced suppression of beta-catenin signaling : evidence for roles of Akt and 14.3.3 zeta
  • 2014
  • Ingår i: Molecular Biology of the Cell. - Bethesda, United States : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 25:19, s. 2894-2904
  • Tidskriftsartikel (refereegranskat)abstract
    • The proinflammatory cytokine interferon gamma (IFNgamma ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. beta-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNgamma inhibits IEC proliferation despite sustained activation of Akt/beta-catenin signaling. Here we show that inhibition of Akt/beta-catenin-mediated cell proliferation by IFNgamma is associated with the formation of a protein complex containing phosphorylated beta-catenin 552 (pbeta-cat552) and 14.3.3zeta. Akt1 served as a bimodal switch that promotes or inhibits beta-catenin transactivation in response to IFNgamma stimulation. IFNgamma initially promotes beta-catenin transactivation through Akt-dependent C-terminal phosphorylation of beta-catenin to promote its association with 14.3.3zeta. Augmented beta-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3zeta to translocate 14.3.3zeta/beta-catenin from the nucleus, thereby inhibiting beta-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy