SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oken Emily) srt2:(2020-2023)"

Sökning: WFRF:(Oken Emily) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jauregui, Alejandra, et al. (författare)
  • Physical activity, sedentary time and cardiometabolic health indicators among Mexican children
  • 2020
  • Ingår i: Clinical Obesity. - : Wiley-Blackwell. - 1758-8103 .- 1758-8111. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the independent associations of moderate to vigorous physical activity (MVPA) and sedentary time (ST) with cardiometabolic indicators in Mexican children (4-6 years of age). We conducted a cross-sectional study (n = 400) using the measures of MVPA and ST (7-day accelerometry) and the following indicators: % body fat, waist circumference, body mass index (BMI) z-score, glycated haemoglobin, blood glucose, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, leptin, adiponectin and resting blood pressure. We examined the independent associations of MVPA and ST with cardiometabolic indicators through confounder-adjusted and mutually adjusted (including both MVPA and ST) linear regression models. Confounder-adjusted models showed that MVPA was associated with higher BMI z-scores and lower adiponectin levels in girls and lower body fat among boys. ST was associated with higher body fat, in the full sample, and lower LDL cholesterol among boys. After mutually adjusting for MVPA and ST, MVPA (10-minute increase) remained significantly associated with BMI z-score in girls (beta = 0.187, 95% CI: 0.019, 0.356) and ST (60-minute increase) remained significantly associated with higher body fat (beta = 1.11%, 95% CI: 0.019, 2.203) among boys and higher glycated haemoglobin (beta = 0.047% points, 95% CI: 0.000, 0.094) in the full sample. In preschool-aged children, the objective measures of ST and MVPA were associated with small differences in cardiometabolic health indicators. ST was unfavourably associated with some cardiometabolic indicators even after adjusting for MVPA, and thus appeared to have a more significant role than MVPA, especially in boys. Future longitudinal studies should confirm these results.
  •  
2.
  • Lozano, Manuel, et al. (författare)
  • DNA methylation changes associated with prenatal mercury exposure : A meta-analysis of prospective cohort studies from PACE consortium
  • 2022
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (β = 2.28 × 10−4, p-value = 5.87 × 10−5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (β = 0.004, p-value = 4.97 × 10−5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (β = 0.002, p-value = 4.81 × 10−7) in GRK1 and cg02212000 (β = −0.001, p-value = 8.13 × 10−7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.
  •  
3.
  • Merid, Simon Kebede, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age
  • 2020
  • Ingår i: Genome Medicine. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 1756-994X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
  •  
4.
  • Pervjakova, Natalia, et al. (författare)
  • Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 31:19, s. 3377-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy (GenDIP) Consortium assembled genome-wide association studies (GWAS) of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (p < 5x10-8) with GDM, mapping to/near MTNR1B (p = 4.3x10-54), TCF7L2 (p = 4.0x10-16), CDKAL1 (p = 1.6 × 10-14), CDKN2A-CDKN2B (p = 4.1x10-9) and HKDC1 (p = 2.9x10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D; and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomisation analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.
  •  
5.
  • Solé Navais, Pol, et al. (författare)
  • Genetic effects on the timing of parturition and links to fetal birth weight.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718. ; 55:4, s. 559-567
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n=195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n=136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
  •  
6.
  • Wong, Sandy, et al. (författare)
  • Associations between daily ambient temperature and sedentary time among children 4-6 years old in Mexico City
  • 2020
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Sedentary behavior is a worldwide public health concern. There is consistent and growing evidence linking sedentary behavior to mortality and morbidity. Early monitoring and assessment of environmental factors associated with sedentary behaviors at a young age are important initial steps for understanding children's sedentary time and identifying pertinent interventions. Objective This study examines the association between daily temperature (maximum, mean, minimum, and diurnal variation) and all-day sedentary time among 4-6 year old children in Mexico City (n = 559) from the year 2013 to 2015. Methods We developed a spatiotemporally resolved hybrid satellite-based land use regression temperature model and calculated percent daily sedentary time from aggregating 10-second epoch vertical counts captured by accelerometers that participants wore for one week. We modeled generalized additive models (GAMs), one for each temperature type as a covariate (maximum, mean, minimum, and diurnal variation). All GAMs included percent all-day sedentary time as the outcome and participant-level random intercepts to account for repeated measures of sedentary time. Our models were adjusted for demographic factors and environmental exposures. Results Daily maximum temperature, mean temperature, and diurnal variation have significant negative linear relationships with all-day sedentary time (p<0.01). There is no significant association between daily minimum temperature and all-day sedentary time. Children have on average 0.26% less daily sedentary time (approximately 2.2 minutes) for each 1 degrees C increase in ambient maximum temperature (range 7.1-30.2 degrees C), 0.27% less daily sedentary time (approximately 2.3 minutes) for each 1 degrees C increase in ambient mean temperature (range 4.3-22.2 degrees C), and 0.23% less daily sedentary time (approximately 2.0 minutes) for each 1 degrees C increase in diurnal variation (range 3.0-21.6 degrees C). Conclusions These results are contrary to our hypothesis in which we expected a curvilinear relationship between temperature (maximum, mean, minimum, and diurnal variation) and sedentary time. Our findings suggest that temperature is an important environmental factor that influences children's sedentary behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy