SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olofsson G.) srt2:(2015-2019)"

Search: WFRF:(Olofsson G.) > (2015-2019)

  • Result 1-25 of 96
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Keppler, M., et al. (author)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
3.
  • Thomas, H. J.D., et al. (author)
  • Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
  • 2019
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:2, s. 78-95
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra ecosystem change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insight into ecological prediction and modelling.
  •  
4.
  • Wright, G. S., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Journal article (peer-reviewed)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
5.
  • Olofsson, J., et al. (author)
  • Resolving faint structures in the debris disk around TWA 7 Tentative detections of an outer belt, a spiral arm, and a dusty cloud
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at similar to 0.72 '' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of similar to 13 degrees with a position angle of similar to 91 degrees east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of similar to 1.5 '' (similar to 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11 ''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at similar to 0.2 '' (similar to 7 au) and another belt at 0.72 '' (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M-circle plus planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
  •  
6.
  • Boccaletti, A., et al. (author)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Journal article (peer-reviewed)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
7.
  • Chauvin, G., et al. (author)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Journal article (peer-reviewed)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
8.
  • Cheetham, A. C., et al. (author)
  • Spectral and orbital characterisation of the directly imaged giant planet HIP 65426 b
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • HIP 65426 b is a recently discovered exoplanet imaged during the course of the SPHERE-SHINE survey. Here we present new L' and M' observations of the planet from the NACO instrument at the VLT from the NACO-ISPY survey, as well as a new Y-H spectrum and K-band photometry from SPHERE-SHINE. Using these data, we confirm the nature of the companion as a warm, dusty planet with a mid-L spectral type. From comparison of its SED with the BT-Settl atmospheric models, we derive a best-fit effective temperature of T-eff = 1618 +/- 7 K, surface gravity log g = 3 : 78(-0.03)(+0.04) and radius R = 1.17 +/- 0.04 R-J (statistical uncertainties only). Using the DUSTY and COND isochrones we estimate a mass of 8 +/- 1 MJ. Combining the astrometric measurements from our new datasets and from the literature, we show the first indications of orbital motion of the companion (2.6 sigma significance) and derive preliminary orbital constraints. We find a highly inclined orbit (i = 107(+13)(-10) deg) with an orbital period of 800(+1200)(-400) yr. We also report SPHERE sparse aperture masking observations that investigate the possibility that HIP 65426 b was scattered onto its current orbit by an additional companion at a smaller orbital separation. From this data we rule out the presence of brown dwarf companions with masses greater than 16 M-J at separations larger than 3AU, significantly narrowing the parameter space for such a companion.
  •  
9.
  • Lazzoni, C., et al. (author)
  • Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Journal article (peer-reviewed)abstract
    • Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aims. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (M-p, a(p)), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.
  •  
10.
  • Pascucci, I., et al. (author)
  • A steeper than linear disk mass-stellar mass scaling relation
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 831
  • Journal article (peer-reviewed)abstract
    • © 2016. The American Astronomical Society. All rights reserved. The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887 μm survey of the disk population around objects from ∼2 to 0.03 M o in the nearby ∼2 Myr old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887 μm flux densities into dust disk masses, hereafter M dust. We find that the relation is steeper than linear and of the form M dust ∝ (M ∗)1.3-1.9, where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr old regions of Taurus, Lupus, and Chamaeleon I share the same relation, while the 10 Myr old Upper Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.
  •  
11.
  • Thalmann, C., et al. (author)
  • RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 828:2
  • Journal article (peer-reviewed)abstract
    • LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of similar to 50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J-band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J-band than in the RI bands.
  •  
12.
  • Wagner, J., et al. (author)
  • First 230? : GHz VLBI fringes on 3C 279 using the APEX Telescope (Research Note)
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 581
  • Journal article (peer-reviewed)abstract
    • Aims. We report about a 230? GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). Methods. We installed VLBI equipment and measured the APEX station position to 1? cm accuracy (1σ). We then observed 3C 279 on 2012 May 7 in a 5? h 230? GHz VLBI track with baseline lengths of 2800? Mλ to 7200? Mλ and a finest fringe spacing of 28.6? μas. Results. Fringes were detected on all baselines with signal-to-noise ratios of 12 to 55 in 420? s. The correlated flux density on the longest baseline was ∼0.3? Jy beam-1, out of a total flux density of 19.8? Jy. Visibility data suggest an emission region ≤ 38? μas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 1010? K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ∼ 38? μas. Conclusions. With APEX the angular resolution of 230? GHz VLBI improves to 28.6? μas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40? μas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.
  •  
13.
  • Alemani, Mattia, et al. (author)
  • Dry sliding of a low steel friction material against cast iron at different loads : Characterization of the friction layer and wear debris
  • 2017
  • In: Wear. - : Elsevier. - 0043-1648 .- 1873-2577. ; 376-377, s. 1450-1459
  • Journal article (peer-reviewed)abstract
    • Pin-on-disc testing was used to investigate the sliding behavior and the wear products of a low-steel friction material against a cast iron disc at different applied loads, to investigate the effect of the temperature rise induced by frictional heating. The testing rig was operated in a clean chamber with a purified incoming air flux. The outgoing flux carries the wear particles to an impactor that counted and sorted them by average diameter and weight. At increasing applied loads, corresponding to a proportional increase of the pin-disc contact temperature, the coverage of both the pin and disc surface by a friction layer was found to increase too. The relevant X-Ray diffraction patterns revealed the presence of a large amount of graphite and different compounds originating from the friction material and from the counterface disc, mainly iron oxides, as concerns this latter. After the test at the lowest investigated load, i.e., 1 kg, the disc worn surface exhibited abrasive grooves and a discontinuous friction layer mainly made of compacted iron oxide particles. After the test at higher loads, i.e., 5 and 7 kg, the disc surface was covered by a compact friction layer. As concerns the friction layer on the pins, most of the ingredients from the friction material were detected, in association with the iron oxides from the disc. These results can be interpreted in terms of the temperature stability range of the phenolic resin used as a binder of the friction material. The characterization of the collected airborne wear debris showed that the particles produced by the low temperature (i.e., low load) test were mostly equiaxed; whereas those produced by the high temperature (i.e., high loads) tests, predominantly displayed a plate-like morphology. The mechanisms of their formation in relation to the characteristics of the friction layers are illustrated and discussed.
  •  
14.
  • Barrio, I. C., et al. (author)
  • Biotic interactions mediate patterns of herbivore diversity in the Arctic
  • 2016
  • In: Global Ecology and Biogeography. - : Wiley-Blackwell. - 1466-822X .- 1466-8238. ; 25:9, s. 1108-1118
  • Journal article (peer-reviewed)abstract
    • Aim: Understanding the forces shaping biodiversity patterns, particularly for groups of organisms with key functional roles, will help predict the responses of ecosystems to environmental changes. Our aim was to evaluate the relative role of different drivers in shaping the diversity patterns of vertebrate herbivores, a group of organisms exerting a strong trophic influence in terrestrial Arctic ecosystems. This biome, traditionally perceived as homogeneous and low in biodiversity, includes wide variation in biotic and physical conditions and is currently undergoing major environmental change. Location: The Arctic (including the High Arctic, Low Arctic and Subarctic) MethodsWe compiled available data on vertebrate (birds and mammals) herbivore distribution at a pan-Arctic scale, and used eight variables that represent the most relevant hypotheses for explaining patterns of species richness. We used range maps rasterized on a 100kmx100km equal-area grid to analyse richness patterns of all vertebrate herbivore species combined, and birds and mammalian herbivores separately. Results: Overall, patterns of herbivore species richness in the Arctic were positively related to plant productivity (measured using the normalized difference vegetation index) and to the species richness of predators. Greater species richness of herbivores was also linked to areas with a higher mean annual temperature. Species richness of avian and mammalian herbivores were related to the distance from the coast, with the highest avian richness in coastal areas and mammalian richness peaking further inland. Main conclusions: Herbivore richness in the Arctic is most strongly linked to primary productivity and the species richness of predators. Our results suggest that biotic interactions, with either higher or lower trophic levels or both, can drive patterns of species richness at a biome-wide scale. Rapid ongoing environmental changes in the Arctic are likely to affect herbivore diversity through impacts on both primary productivity and changes in predator communities via range expansion of predators from lower latitudes.
  •  
15.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
16.
  • Björkman, Anne, 1981, et al. (author)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
17.
  • Boman, Kurt, et al. (author)
  • Healthcare resource utilization associated with heart failure with preserved versus reduced ejection fraction : a retrospective population-based cohort study in Sweden
  • 2017
  • In: European Journal of Heart Failure. - : European Society of Cardiology. - 1388-9842 .- 1879-0844. ; 19:S1, s. 346-346
  • Journal article (peer-reviewed)abstract
    • Background and purpose: To estimate healthcare resource utilization among patients with heart failure (HF) with preserved (HFpEF) versus reduced (HFrEF) ejection fraction using population data from two Swedish counties.Methods: Patients with HF were identified via electronic medical records (EMRs) from primary and/or secondary care in Uppsala and Västerbotten, linked via unique identifiers to data from the National Patient Register and Swedish Prescribed Drug Register. Local echocardiography data were used to identify HFpEF (defined as ejection fraction ≥50%) and HFrEF (defined as <50%). Patients aged ≥18 years with ≥2 diagnoses of HF between 01/01/2010 and 31/03/2015 and an ICD-10 diagnostic code of I50 (inclusive of all granular codes), I42.0, I42.6, I42.7, I42.9, I110, I130 or I132 in any position were included. Patients were followed from date of first diagnosis (index date) to end of study period or EMR collection, date of death or loss to follow-up for other reasons, whichever came first. Unadjusted all-cause and cardiovascular disease (CVD)-related hospitalization rates were assessed using a Cox proportional hazards model, accounting for age, sex, setting of first diagnosis (primary vs secondary care), HF phenotype and NT-proBNP level.Results: In total, 8702 patients with HF were identified. HF phenotype was known in 3167 patients; 64.6% had HFrEF, 35.4% had HFpEF. Patients with HFrEF were younger (mean±SD: 69.9±13.7 vs 74.2±12.6 years) with a lower Charlson comorbidity index (1.65 vs 1.83) than those with HFpEF. All-cause hospitalization rates were marginally lower for HFrEF than for HFpEF (mean [95% CI] proportion of patients hospitalized within 1 year of diagnosis, 72.5 [70.1–74.8]% vs 73.8 [70.7–77.0]%; hazard ratio [HR] over whole follow-up period, 0.87 [0.79–0.97], p=0.0093). The proportion of patients hospitalized was higher for those diagnosed in secondary care than in primary care, particularly within 1 year of diagnosis (1-year rate, 69.6 [68.3–71.0]% vs 59.1 [56.8–61.4]%; HR, 1.15 [1.07–1.23], p=0.0002). Similar trends were observed for CVD-related hospitalization rates for HFrEF vs HFpEF (1-year rate, 69.5 [67.1–71.9]% vs 70.7 [67.5–74.0]%; HR, 0.89 [0.81–0.99], p=0.0309) and for patients diagnosed in secondary vs primary care (1-year rate, 66.6 [65.3–68.0]% vs 56.2 [53.8–58.5]%; HR, 1.15 [1.07–1.24], p=0.0001). Numbers of hospitalizations and outpatient visits decreased with time after diagnosis for HFrEF, but increased slightly for HFpEF after 2 years (Figure). The mean±SD total number of all-cause days of hospitalization during the first year after diagnosis was lower in patients with HFrEF vs HFpEF (19.9±26.1 vs 26.3±34.5 days), while the number of HF-related days of hospitalization was similar (16.0±22.4 vs 17.2±24.0 days).Conclusions: Number and duration of hospital stays were significantly lower over time in patients with HFrEF than HFpEF; this may be explained by the comorbidity burden in the latter group.
  •  
18.
  • Bouchet, P., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 612-622
  • Journal article (peer-reviewed)abstract
    • In this article, we describe the Mid-Infrared Imager Module (MIRIM), which provides broadband imaging in the 5-27 mu m wavelength range for the James Webb Space Telescope. The imager has a 0 ''.11 pixel scale and a total unobstructed view of 74 '' x 113 '' The remainder of its nominal 113 '' x 113 '' field is occupied by the coronagraphs and the low-resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.
  •  
19.
  • Chauvin, G., et al. (author)
  • Investigating the young solar system analog HD 95086 A combined HARPS and SPHERE exploration
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 Mjup have been directly imaged.Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light.Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017.Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 mu m spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2(-0.2)(+0.3), with a semi-major axis similar to 52 au corresponding to orbital periods of similar to 288 yr and an inclination that peaks at i = 141 degrees, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.
  •  
20.
  • Cheetham, A., et al. (author)
  • Discovery of a brown dwarf companion to the star HIP 64892
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 +/- 0.0023) corresponds to a projected distance of 159 +/- 12AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9 gamma +/- 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of T-eff = 2600 +/- 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of similar to 29-37 M-J at the estimated age of 16(-7)(+15) Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q similar to 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
  •  
21.
  • Claudi, R., et al. (author)
  • SPHERE dynamical and spectroscopic characterization of HD142527B
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Aims. HD142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (>5 au) orbital separation around young stars. Methods. We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. Results. We detect the accreting low-mass companion HD142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M-J are visible in the field of view of IFS (similar to 100 au centered on the star) or in the IRDIS field of view (similar to 400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 +/- 0.06 M-circle dot and R = 0.15 +/- 0.07 R-circle dot. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26(-0.14)(+0.16) , which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 137 yr; an inclination of i = 121 130 degrees, a value of Omega = 124 135 degrees for the longitude of node, and an 68% confidence interval of similar to 18-57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: similar to 0.2-0.45 and similar to 0.45-0.7 for e, and similar to 2015-2020 and similar to 2020-2022 for T-0. While these orbital parameters might at first suggest that HD142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features.
  •  
22.
  • Groenewegen, M. A. T., et al. (author)
  • The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596, s. 50-
  • Journal article (peer-reviewed)abstract
    • Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium.Aims. This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC).Methods. The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2−1 line.Results. We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC.Conclusions. Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models.
  •  
23.
  • Karakatsanis, Andreas, et al. (author)
  • Effect of preoperative injection of superparamagnetic iron oxide particles on rates of sentinel lymph node dissection in women undergoing surgery for ductal carcinoma in situ (SentiNot study)
  • 2019
  • In: British Journal of Surgery. - : Oxford University Press (OUP). - 0007-1323 .- 1365-2168. ; 106:6
  • Journal article (peer-reviewed)abstract
    • Background: One-fifth of patients with a preoperative diagnosis of ductal carcinoma in situ (DCIS) have invasive breast cancer (IBC) on definitive histology. Sentinel lymph node dissection (SLND) is performed in almost half of women having surgery for DCIS in Sweden. The aim of the present study was to try to minimize unnecessary SLND by injecting superparamagnetic iron oxide (SPIO) nanoparticles at the time of primary breast surgery, enabling SLND to be performed later, if IBC is found in the primary specimen. Methods: Women with DCIS at high risk for the presence of invasion undergoing breast conservation, and patients with DCIS undergoing mastectomy were included. The primary outcome was whether this technique could reduce SLND. Secondary outcomes were number of SLNDs avoided, detection rate and procedure-related costs. Results: This was a preplanned interim analysis of 189 procedures. IBC was found in 47 and a secondary SLND was performed in 41 women. Thus, 78.3 per cent of patients avoided SLND (P<0.001). At reoperation, SPIO plus blue dye outperformed isotope and blue dye in detection of the sentinel node (40 of 40 versus 26 of 40 women; P<0.001). Costs were reduced by a mean of 24.5 per cent in women without IBC (3990 versus 5286; P<0.001). Conclusion: Marking the sentinel node with SPIO in women having surgery for DCIS was effective at avoiding unnecessary SLND in this study. Registration number: ISRCTN18430240 (http://www.isrctn.com).
  •  
24.
  • Lagrange, A. -M., et al. (author)
  • A narrow, edge-on disk resolved around HD 106906 with SPHERE
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586
  • Journal article (peer-reviewed)abstract
    • Context. HD 106906AB is the only young binary system so far around which a planet has been imaged and a debris disk has been shown to exist, thanks to a strong IR excess. As such, it represents a unique opportunity for studying the dynamics of young planetary systems. Aims. We aim at further investigating the close (tens of au scales) environment of the HD 106906AB system. Methods. We used the extreme adaptive-optics-fed, high-contrast imager SPHERE that has recently been installed on the VLT to observe HD 106906. Both the IRDIS imager and the Integral Field Spectrometer were used. Results. We discovered a highly inclined, ring-like disk at a distance of 65 au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planet's projected position is significantly above the PA of the disk. Given the determined disk inclination, it is not excluded, however, that the planet could still orbit within the disk plane if at a large separation (2000 3000 au). We identified several additional point sources in the SPHERE /IRDIS field of view that appear to be background objects. We compare this system with other debris disks sharing similarities, and we briefly discuss the present results in the framework of dynamical evolution.
  •  
25.
  • Liseau, René, 1949, et al. (author)
  • ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm wavelength
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573, s. L4 (4 pages)-
  • Research review (peer-reviewed)abstract
    • Context. The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. This feedback will probably also help identify stars that potentially host planetary systems that are reminiscent of our own.Aims: Earlier observations with Herschel and APEX have revealed the temperature minimum of α Cen, but these were unable to spatially resolve the binary into individual components. With the data reported in this Letter, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870 μm. In the present context, we intend to extend the spectral mapping (SED) to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident.Methods: The Atacama Large Millimeter/submillimeter Array (ALMA) is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars.Results: This is the first detection of main-sequence stars at a wavelength of 3 mm. Furthermore, the individual components of the binary α Cen AB are clearly detected and spatially well resolved at all ALMA wavelengths. The high signal-to-noise ratios of these data permit accurate determination of their relative flux ratios, i.e., SyB / SyA> = 0.54 ± 0.04 at 440 μm, = 0.46 ± 0.01 at 870 μm, and = 0.47 ± 0.006 at 3.1 mm, respectively.Conclusions: The previously obtained flux ratio of 0.44±0.18, which was based on measurements in the optical and at 70 μm, is consistent with the present ALMA results, albeit with a large error bar. The observed 3.1 mm emission greatly exceeds what is predicted from the stellar photospheres, and undoubtedly arises predominantly as free-free emission in the ionized chromospheric plasmas of both stars. Given the distinct difference in their cyclic activity, the similarity of their submm SEDs appears surprising.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 96
Type of publication
journal article (85)
conference paper (8)
book (1)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (85)
other academic/artistic (11)
Author/Editor
Olofsson, J (22)
Janson, Markus (18)
Chauvin, G. (17)
Mesa, D. (16)
Langlois, M. (16)
Ménard, F. (16)
show more...
Lagrange, A.-M. (16)
Boccaletti, A. (16)
Gratton, R. (15)
Desidera, S. (15)
Bonnefoy, M. (15)
Maire, A.-L. (15)
Vigan, A. (15)
Feldt, M. (14)
Zurlo, A. (14)
Sissa, E. (14)
Henning, T. (13)
Olofsson, Hans, 1952 (11)
Hagelberg, J. (11)
Schmidt, T. (10)
Kral, Q. (10)
Cheetham, A. (10)
Perrot, C. (10)
Samland, M. (10)
Dominik, C. (9)
Brandner, W. (9)
le Coroller, H (9)
Milli, J. (9)
Lagadec, E. (9)
Avenhaus, H. (9)
Beuzit, J-L (9)
Peretti, S. (9)
Feautrier, P. (9)
Udry, S. (8)
Augereau, J-C (8)
Mouillet, D. (8)
Galicher, R. (8)
Bergman, G. J. (8)
Tornblom, M. (8)
Lannier, J. (8)
Meyer, M. (7)
Thalmann, C. (7)
Abe, L. (7)
Justtanont, Kay, 196 ... (7)
Henning, Th. (7)
Keppler, M. (7)
Olofsson, Johan (7)
Thebault, P. (7)
Cudel, M. (7)
Daemgen, S. (7)
show less...
University
Stockholm University (21)
Chalmers University of Technology (21)
Umeå University (19)
Karolinska Institutet (17)
Uppsala University (14)
Lund University (14)
show more...
University of Gothenburg (12)
Royal Institute of Technology (5)
Örebro University (4)
Swedish University of Agricultural Sciences (4)
Linköping University (2)
Halmstad University (1)
Linnaeus University (1)
RISE (1)
Karlstad University (1)
Högskolan Dalarna (1)
show less...
Language
English (94)
Swedish (2)
Research subject (UKÄ/SCB)
Natural sciences (53)
Medical and Health Sciences (24)
Engineering and Technology (6)
Social Sciences (4)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view