SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oresic M) srt2:(2010-2014)"

Sökning: WFRF:(Oresic M) > (2010-2014)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uusitupa, M., et al. (författare)
  • Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome : a randomized study (SYSDIET)
  • 2013
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 274:1, s. 52-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome. Methods We conducted a randomized dietary study lasting for 18-24weeks in individuals with features of metabolic syndrome (mean age 55years, BMI 31.6kgm-2, 67% women). Altogether 309 individuals were screened, 200 started the intervention after 4-week run-in period, and 96 (proportion of dropouts 7.9%) and 70 individuals (dropouts 27%) completed the study, in the Healthy diet and Control diet groups, respectively. Healthy diet included whole-grain products, berries, fruits and vegetables, rapeseed oil, three fish meals per week and low-fat dairy products. An average Nordic diet served as a Control diet. Compliance was monitored by repeated 4-day food diaries and fatty acid composition of serum phospholipids. Results Body weight remained stable, and no significant changes were observed in insulin sensitivity or blood pressure. Significant changes between the groups were found in non-HDL cholesterol (-0.18, mmolL-1 95% CI -0.35; -0.01, P=0.04), LDL to HDL cholesterol (-0.15, -0.28; -0.00, P=0.046) and apolipoprotein B to apolipoprotein A1 ratios (-0.04, -0.07; -0.00, P=0.025) favouring the Healthy diet. IL-1 Ra increased during the Control diet (difference -84, -133; -37ngL-1, P= 0.00053). Intakes of saturated fats (E%, beta estimate 4.28, 0.02; 8.53, P=0.049) and magnesium (mg, -0.23, -0.41; -0.05, P=0.012) were associated with IL-1 Ra. Conclusions Healthy Nordic diet improved lipid profile and had a beneficial effect on low-grade inflammation.
  •  
2.
  • Lagathu, C., et al. (författare)
  • Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity.
  • 2010
  • Ingår i: International Journal of Obesity. - London, United Kingdom : Nature Publishing Group. - 0307-0565 .- 1476-5497. ; 34:12, s. 1695-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The Wnt/β-catenin signaling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. In this study, we investigate the role of the Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), in promoting adipogenesis in vitro and adipose tissue expansion in vivo.METHODS: We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1.RESULTS: SFRP1 is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis, and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signaling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high-fat-diet-fed mice, we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile, we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects.CONCLUSIONS: Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signaling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals.
  •  
3.
  • Orešič, Matej, 1967-, et al. (författare)
  • Metabolome in progression to Alzheimer's disease
  • 2011
  • Ingår i: Translational Psychiatry. - New York : Nature Publishing Group. - 2158-3188. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mild cognitive impairment (MCI) is considered as a transition phase between normal aging and Alzheimer's disease (AD). MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition. We sought to determine the serum metabolomic profiles associated with progression to and diagnosis of AD in a prospective study. At the baseline assessment, the subjects enrolled in the study were classified into three diagnostic groups: healthy controls (n=46), MCI (n=143) and AD (n=47). Among the MCI subjects, 52 progressed to AD in the follow-up. Comprehensive metabolomics approach was applied to analyze baseline serum samples and to associate the metabolite profiles with the diagnosis at baseline and in the follow-up. At baseline, AD patients were characterized by diminished ether phospholipids, phosphatidylcholines, sphingomyelins and sterols. A molecular signature comprising three metabolites was identified, which was predictive of progression to AD in the follow-up. The major contributor to the predictive model was 2,4-dihydroxybutanoic acid, which was upregulated in AD progressors (P=0.0048), indicating potential involvement of hypoxia in the early AD pathogenesis. This was supported by the pathway analysis of metabolomics data, which identified upregulation of pentose phosphate pathway in patients who later progressed to AD. Together, our findings primarily implicate hypoxia, oxidative stress, as well as membrane lipid remodeling in progression to AD. Establishment of pathogenic relevance of predictive biomarkers such as ours may not only facilitate early diagnosis, but may also help identify new therapeutic avenues.
  •  
4.
  • Budczies, Jan, et al. (författare)
  • Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study
  • 2012
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Changes in energy metabolism of the cells are common to many kinds of tumors and are considered a hallmark of cancer. Gas chromatography followed by time-of-flight mass spectrometry (GC-TOFMS) is a well-suited technique to investigate the small molecules in the central metabolic pathways. However, the metabolic changes between invasive carcinoma and normal breast tissues were not investigated in a large cohort of breast cancer samples so far.RESULTS: A cohort of 271 breast cancer and 98 normal tissue samples was investigated using GC-TOFMS-based metabolomics. A total number of 468 metabolite peaks could be detected; out of these 368 (79%) were significantly changed between cancer and normal tissues (p<0.05 in training and validation set). Furthermore, 13 tumor and 7 normal tissue markers were identified that separated cancer from normal tissues with a sensitivity and a specificity of >80%. Two-metabolite classifiers, constructed as ratios of the tumor and normal tissues markers, separated cancer from normal tissues with high sensitivity and specificity. Specifically, the cytidine-5-monophosphate / pentadecanoic acid metabolic ratio was the most significant discriminator between cancer and normal tissues and allowed detection of cancer with a sensitivity of 94.8% and a specificity of 93.9%.CONCLUSIONS: For the first time, a comprehensive metabolic map of breast cancer was constructed by GC-TOF analysis of a large cohort of breast cancer and normal tissues. Furthermore, our results demonstrate that spectrometry-based approaches have the potential to contribute to the analysis of biopsies or clinical tissue samples complementary to histopathology.
  •  
5.
  • Andersen, Gregers Stig Tig, et al. (författare)
  • The DEXLIFE study methods : identifying novel candidate biomarkers that predict progression to type 2 diabetes in high risk individuals
  • 2014
  • Ingår i: Diabetes Research and Clinical Practice. - : Elsevier. - 0168-8227 .- 1872-8227. ; 106:2, s. 383-389
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of type 2 diabetes (T2D) is rapidly increasing worldwide and T2D is likely to affect 592 million people in 2035 if the current rate of progression is continued. Today, patients are diagnosed with T2D based on elevated blood glucose, either directly or indirectly (HbA1c). However, the information on disease progression is limited. Therefore, there is a need to identify novel early markers of glucose intolerance that reflect the underlying biology and the overall physiological, metabolic and clinical characteristics of progression towards diabetes. In the DEXLIFE study, several clinical cohorts provide the basis for a series of clinical, physiological and mechanistic investigations in combination with a range of--omic technologies to construct a detailed metabolic profile of high-risk individuals across multiple cohorts. In addition, an exercise and dietary intervention study is conducted, that will assess the impact on both plasma biomarkers and specific functional tissue-based markers. The DEXLIFE study will provide novel diagnostic and predictive biomarkers which may not only effectively detect the progression towards diabetes in high risk individuals but also predict responsiveness to lifestyle interventions known to be effective in the prevention of diabetes.
  •  
6.
  • Brockmöller, Scarlet F., et al. (författare)
  • Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling
  • 2012
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:2, s. 850-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in lipid metabolism are an important but not well-characterized hallmark of cancer. On the basis of our recent findings of lipidomic changes in breast cancer, we investigated glycerol-3-phosphate acyltransferase (GPAM), a key enzyme in the lipid biosynthesis of triacylglycerols and phospholipids. GPAM protein expression was evaluated and linked to metabolomic and lipidomic profiles in a cohort of human breast carcinomas. In addition, GPAM mRNA expression was analyzed using the GeneSapiens in silico transcriptiomics database. High cytoplasmic GPAM expression was associated with hormone receptor negative status (p = 0.013). On the protein (p = 0.048) and mRNA (p = 0.001) levels, increased GPAM expression was associated with a better overall survival. Metabolomic analysis by GC-MS showed that sn-glycerol-3-phosphate, the substrate of GPAM, was elevated in breast cancer compared to normal breast tissue. LC-MS based lipidomic analysis identified significantly higher levels of phospholipids, especially phosphatidylcholines in GPAM protein positive tumors. In conclusion, our results suggest that GPAM is expressed in human breast cancer with associated changes in the cellular metabolism, in particular an increased synthesis of phospholipids, the major structural component of cellular membranes.
  •  
7.
  • Budczies, Jan, et al. (författare)
  • Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer : alterations in glutamine and beta-alanine metabolism
  • 2013
  • Ingår i: Journal of Proteomics. - : Lippincott Williams & Wilkins. - 1874-3919 .- 1876-7737. ; 94, s. 279-288
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Molecular subtyping of breast cancer is necessary for therapy selection and mandatory for all breast cancer patients. Metabolic alterations are considered a hallmark of cancer and several metabolic drugs are currently being investigated in clinical trials. However, the dependence of metabolic alterations on breast cancer subtypes has not been investigated on -omics scale. Thus, 204 estrogen receptor positive (ER+) and 67 estrogen receptor negative (ER-) breast cancer tissues were investigated using GC-TOFMS based metabolomics. 19 metabolites were detected as altered in a predefined training set (2/3 of tumors) and could be validated in a predefined validation set (1/3 of tumors). The metabolite changes included increases in beta-alanine, 2-hydroyglutarate, glutamate, xanthine and decreases in glutamine in the ER- subtype. Beta-alanine demonstrated the strongest change between ER- and ER+ breast cancer (fold change=2.4, p=1.5E-20). In a correlation analysis with genome-wide expression data in a subcohort of 154 tumors, we found a strong negative correlation (Spearman R=-0.62) between beta-alanine and 4-aminobutyrate aminotransferase (ABAT). Immunohistological analysis confirmed down-regulation of the ABAT protein in ER- breast cancer. In a Kaplan-Meier analysis of a large external expression data set, the ABAT transcript was demonstrated to be a positive prognostic marker for breast cancer (HR=0.6, p=3.2E-15).BIOLOGICAL SIGNIFICANCE: It is well-known for more than a decade that breast cancer exhibits distinct gene expression patterns depending on the molecular subtype defined by estrogen receptor (ER) and HER2 status. Here, we show that breast cancer exhibits distinct metabolomics patterns depending on ER status. Our observation supports the current view of ER+ breast cancer and ER- breast as different diseases requiring different treatment strategies. Metabolic drugs for cancer including glutaminase inhibitors are currently under development and tested in clinical trials. We found glutamate enriched and glutamine reduced in ER- breast cancer compared to ER+ breast cancer and compared to normal breast tissues. Thus, metabolomics analysis highlights the ER- subtype as a preferential target for glutaminase inhibitors. For the first time, we report on a regulation of beta-alanine catabolism in cancer. In breast cancer, ABAT transcript expression was variable and correlated with ER status. Low ABAT transcript expression was associated with low ABAT protein expression and high beta-alanine concentration. In a large external microarray cohort, low ABAT expression shortened recurrence-free survival in breast cancer, ER+ breast cancer and ER- breast cancer.
  •  
8.
  • Carobbio, Stefania, et al. (författare)
  • Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity
  • 2013
  • Ingår i: Diabetes. - : Cell Press. - 0012-1797 .- 1939-327X. ; 62:11, s. 3697-3708
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
  •  
9.
  • Finckenberg, Piet, et al. (författare)
  • Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy
  • 2012
  • Ingår i: Hypertension. - : Lippincott Williams & Wilkins. - 0194-911X .- 1524-4563. ; 59:1, s. 76-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin II-induced cardiac damage is associated with oxidative stress-dependent mitochondrial dysfunction. Caloric restriction (CR), a dietary regimen that increases mitochondrial activity and cellular stress resistance, could provide protection. We tested that hypothesis in double transgenic rats harboring human renin and angiotensinogen genes (dTGRs). CR (60% of energy intake for 4 weeks) decreased mortality in dTGRs. CR ameliorated angiotensin II-induced cardiomyocyte hypertrophy, vascular inflammation, cardiac damage and fibrosis, cardiomyocyte apoptosis, and cardiac atrial natriuretic peptide mRNA overexpression. The effects were blood pressure independent and were linked to increased endoplasmic reticulum stress, autophagy, serum adiponectin level, and 5' AMP-activated protein kinase phosphorylation. CR decreased cardiac p38 phosphorylation, nitrotyrosine expression, and serum insulin-like growth factor 1 levels. Mitochondria from dTGR hearts showed clustered mitochondrial patterns, decreased numbers, and volume fractions but increased trans-sectional areas. All of these effects were reduced in CR dTGRs. Mitochondrial proteomic profiling identified 43 dTGR proteins and 42 Sprague-Dawley proteins, of which 29 proteins were in common in response to CR. We identified 7 proteins in CR dTGRs that were not found in control dTGRs. In contrast, 6 mitochondrial proteins were identified from dTGRs that were not detected in any other group. Gene ontology annotations with the Panther protein classification system revealed downregulation of cytoskeletal proteins and enzyme modulators and upregulation of oxidoreductase activity in dTGRs. CR provides powerful, blood pressure-independent, protection against angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy. The findings support the notion of modulating cardiac bioenergetics to ameliorate angiotensin II-induced cardiovascular complications.
  •  
10.
  • Greiner, Thomas U., 1977, et al. (författare)
  • The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice
  • 2014
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic ( NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses.
  •  
11.
  • Hyysalo, Jenni, et al. (författare)
  • Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:1, s. 312-322
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether relative concentrations of circulating triacylglycerols (TAGs) between carriers compared with noncarriers of PNPLA3(I148M) gene variant display deficiency of TAGs, which accumulate in the liver because of defective lipase activity. We also analyzed the effects of obesity-associated nonalcoholic fatty liver disease (NAFLD) independent of genotype, and of NAFLD due to either PNPLA3(I148M) gene variant or obesity on circulating TAGs. A total of 372 subjects were divided into groups based on PNPLA3 genotype or obesity. Absolute and relative deficiency of distinct circulating TAGs was observed in the PNPLA3(148MM/148MI) compared with the PNPLA3(148II) group. Obese and 'nonobese' groups had similar PNPLA3 genotypes, but the obese subjects were insulin-resistant. Liver fat was similarly increased in obese and PNPLA3(148MM/148MI) groups. Relative concentrations of TAGs in the obese subjects versus nonobese displayed multiple changes. These closely resembled those between obese subjects with NAFLD but without PNPLA3(I148M) versus those with the I148M variant and NAFLD. The etiology of NAFLD influences circulating TAG profiles. 'PNPLA3 NAFLD' is associated with a relative deficiency of TAGs, supporting the idea that the I148M variant impedes intrahepatocellular lipolysis rather than stimulates TAG synthesis. 'Obese NAFLD' is associated with multiple changes in TAGs, which can be attributed to obesity/insulin resistance rather than increased liver fat content per se.
  •  
12.
  •  
13.
  • Kolak, Maria, et al. (författare)
  • Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue
  • 2012
  • Ingår i: Lipids in Health and Disease. - : BioMed Central (BMC). - 1476-511X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue.METHODS: Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject.RESULTS: Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot.CONCLUSIONS: Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue.
  •  
14.
  •  
15.
  •  
16.
  • Lahti, Leo, et al. (författare)
  • Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data
  • 2013
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence indicates that the intestinal microbiota regulates our physiology and metabolism. Bacteria marketed as probiotics confer health benefits that may arise from their ability to affect the microbiota. Here high-throughput screening of the intestinal microbiota was carried out and integrated with serum lipidomic profiling data to study the impact of probiotic intervention on the intestinal ecosystem, and to explore the associations between the intestinal bacteria and serum lipids. We performed a comprehensive intestinal microbiota analysis using a phylogenetic microarray before and after Lactobacillus rhamnosus GG intervention. While a specific increase in the L. rhamnosus-related bacteria was observed during the intervention, no other changes in the composition or stability of the microbiota were detected. After the intervention, lactobacilli returned to their initial levels. As previously reported, also the serum lipid profiles remained unaltered during the intervention. Based on a high-resolution microbiota analysis, intake of L. rhamnosus GG did not modify the composition of the intestinal ecosystem in healthy adults, indicating that probiotics confer their health effects by other mechanisms. The most prevailing association between the gut microbiota and lipid profiles was a strong positive correlation between uncultured phylotypes of Ruminococcus gnavus-group and polyunsaturated serum triglycerides of dietary origin. Moreover, a positive correlation was detected between serum cholesterol and Collinsella (Coriobacteriaceae). These associations identified with the spectrometric lipidome profiling were corroborated by enzymatically determined cholesterol and triglyceride levels. Actinomycetaceae correlated negatively with triglycerides of highly unsaturated fatty acids while a set of Proteobacteria showed negative correlation with ether phosphatidylcholines. Our results suggest that several members of the Firmicutes, Actinobacteria and Proteobacteria may be involved in the metabolism of dietary and endogenous lipids, and provide a scientific rationale for further human studies to explore the role of intestinal microbes in host lipid metabolism.
  •  
17.
  • Lankinen, Maria A., et al. (författare)
  • Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome
  • 2010
  • Ingår i: NMCD. Nutrition Metabolism and Cardiovascular Diseases. - : Elsevier. - 0939-4753 .- 1590-3729. ; 20:4, s. 249-57
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: Whole-grain cereals and diets with a low glycemic index may protect against the development of type 2 diabetes and heart disease, but the mechanisms are poorly understood. We studied the effect of carbohydrate modification on serum metabolic profiles, including lipids and branched chain amino acids, and dependencies between these and specific gene expression pathways in adipose tissue.METHODS AND RESULTS: Twenty subjects with metabolic syndrome were selected from the larger FUNGENUT study population, randomized either to a diet high in oat and wheat bread and potato (OWP) or rye bread and pasta (RP). Serum metabolomics analyses were performed using ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry (UPLC/MS), gas chromatography (GC) and UPLC. In the OWP group multiple proinflammatory lysophosphatidylcholines increased, while in the RP group docosahexaenoic acid (DHA 22:6n-3) increased and isoleucine decreased. mRNA expression of stress reactions- and adipose tissue differentiation-related genes were up-regulated in adipose tissue in the OWP group. In the RP group, however, pathways related to stress reactions and insulin signaling and energy metabolism were down-regulated. The lipid profiles had the strongest association with the changes in the adipose tissue differentiation pathway when using the elastic net regression model of the lipidomic profiles on selected pathways.CONCLUSION: Our results suggest that the dietary carbohydrate modification alters the serum metabolic profile, especially in lysoPC species, and may, thus, contribute to proinflammatory processes which in turn promote adverse changes in insulin and glucose metabolism.
  •  
18.
  • Leskinen, Tuija, et al. (författare)
  • Differences in muscle and adipose tissue gene expression and cardio-metabolic risk factors in the members of physical activity discordant twin pairs
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 5:9
  • Tidskriftsartikel (refereegranskat)abstract
    • High physical activity/aerobic fitness predicts low morbidity and mortality. Our aim was to identify the most up-regulated gene sets related to long-term physical activity vs. inactivity in skeletal muscle and adipose tissues and to obtain further information about their link with cardio-metabolic risk factors. We studied ten same-sex twin pairs (age range 50-74 years) who had been discordant for leisure-time physical activity for 30 years. The examinations included biopsies from m. vastus lateralis and abdominal subcutaneous adipose tissue. RNA was analyzed with the genome-wide Illumina Human WG-6 v3.0 Expression BeadChip. For pathway analysis we used Gene Set Enrichment Analysis utilizing active vs. inactive co-twin gene expression ratios. Our findings showed that among the physically active members of twin pairs, as compared to their inactive co-twins, gene expression in the muscle tissue samples was chronically up-regulated for the central pathways related to energy metabolism, including oxidative phosphorylation, lipid metabolism and supportive metabolic pathways. Up-regulation of these pathways was associated in particular with aerobic fitness and high HDL cholesterol levels. In fat tissue we found physical activity-associated increases in the expression of polyunsaturated fatty acid metabolism and branched-chain amino acid degradation gene sets both of which associated with decreased 'high-risk' ectopic body fat and plasma glucose levels. Consistent with other findings, plasma lipidomics analysis showed up-regulation of the triacylglycerols containing the polyunsaturated fatty acids. Our findings identified skeletal muscle and fat tissue pathways which are associated with the long-term physical activity and reduced cardio-metabolic disease risk, including increased aerobic fitness. In particular, improved skeletal muscle oxidative energy and lipid metabolism as well as changes in adipocyte function and redistribution of body fat are associated with reduced cardio-metabolic risk.
  •  
19.
  • Oresic, Matej, 1967-, et al. (författare)
  • Phospholipids and insulin resistance in psychosis : A lipidomics study of twin pairs discordant for schizophrenia
  • 2012
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several theories have been proposed to conceptualize the pathological processes inherent to schizophrenia. The 'prostaglandin deficiency' hypothesis postulates that defective enzyme systems converting essential fatty acids to prostaglandins lead to diminished levels of prostaglandins, which in turn affect synaptic transmission.Methods: Here we sought to determine the lipidomic profiles associated with schizophrenia in twin pairs discordant for schizophrenia as well as unaffected twin pairs. The study included serum samples from 19 twin pairs discordant for schizophrenia (mean age 51 +/- 10 years; 7 monozygotic pairs; 13 female pairs) and 34 age and gender matched healthy twins as controls. Neurocognitive assessment data and gray matter density measurements taken from high-resolution magnetic resonance images were also obtained. A lipidomics platform using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry was applied for the analysis of serum samples.Results: In comparison to their healthy co-twins, the patients had elevated triglycerides and were more insulin resistant. They had diminished lysophosphatidylcholine levels, which associated with decreased cognitive speed.Conclusions: Our findings may be of pathophysiological relevance since lysophosphatidylcholines, byproducts of phospholipase A2-catalyzed phospholipid hydrolysis, are preferred carriers of polyunsaturated fatty acids across the blood-brain barrier. Furthermore, diminishment of lysophosphatidylcholines suggests that subjects at risk of schizophrenia may be more susceptible to infections. Their association with cognitive speed supports the view that altered neurotransmission in schizophrenia may be in part mediated by reactive lipids such as prostaglandins.
  •  
20.
  • Ottestad, Inger, et al. (författare)
  • Fish oil supplementation alters the plasma lipidomic profile and increases long-chain PUFAs of phospholipids and triglycerides in healthy subjects
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects.METHODOLOGY/PRINCIPAL FINDINGS: In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping.CONCLUSIONS/SIGNIFICANCE: In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated.TRIAL REGISTRATION: ClinicalTrials.gov NCT01034423.
  •  
21.
  • Prawitt, Janne, et al. (författare)
  • Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:7, s. 1861-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.RESEARCH DESIGN AND METHODS: Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity.RESULTS: FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism.CONCLUSIONS: Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.
  •  
22.
  • Rantamäki, Antti H., et al. (författare)
  • Human tear fluid lipidome : from composition to function
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored human aqueous tear fluid lipidome with an emphasis to identify the major lipids. We also address the physiological significance of the lipidome. The tears were analysed using thin layer chromatographic, enzymatic and mass spectrometric techniques. To emphasize the physiological aspect of the lipidome, we modelled the spreading of the non-polar tear fluid lipids at air-water interface in macroscopic scale with olive oil and egg yolk phosphatidylcholine. Based on enzymatic analysis the respective concentrations of choline-containing lipids, triglycerides, and cholesteryl esters were 48±14, 10±0, and 21±18 µM. Ultra performance liquid chromatography quadrupole time of flight mass spectrometry analysis showed that phosphatidylcholine and phosphatidylethanolamine were the two most common polar lipids comprising 88±6% of all identified lipids. Triglycerides were the only non-polar lipids detected in mass spectrometric analysis i.e. no cholesteryl or wax esters were identified. The spreading experiments show that the presence of polar lipids is an absolute necessity for a proper spreading of non-polar tear fluid lipids. We provide evidence that polar lipids are the most common lipid species. Furthermore, we provide a physiological rationale for the observed lipid composition. The results open insights into the functional role of lipids in the tear fluid and also aids in providing new means to understand and treat diseases of the ocular surface.
  •  
23.
  •  
24.
  • Westerbacka, Jukka, et al. (författare)
  • Splanchnic balance of free fatty acids, endocannabinoids, and lipids in subjects with nonalcoholic fatty liver disease
  • 2010
  • Ingår i: Gastroenterology. - : Saunders Elsevier. - 0016-5085 .- 1528-0012. ; 139:6, s. 1961-1971.e1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Animal studies suggest that endocannabinoids could contribute to the development of nonalcoholic fatty liver disease (NAFLD). In addition, NAFLD has been shown to be associated with multiple changes in lipid concentrations in liver biopsies. There are no data on splanchnic free fatty acid (FFA), glycerol, ketone body, endocannabinoid, and lipid fluxes in vivo in subjects with NAFLD.METHODS: We performed hepatic venous catheterization studies in combination with [(2)H(2)]palmitate infusion in the fasting state and during a low-dose insulin infusion in 9 subjects with various degrees of hepatic steatosis as determined using liver biopsy. Splanchnic balance of endocannabinoids and individual lipids was determined using ultra performance liquid chromatography coupled to mass spectrometry.RESULTS: Concentrations of the endocannabinoid 2-arachidonoylglycerol were higher in arterialized (91 ± 33 μg/L basally) than in hepatic venous (51 ± 19 μg/L; P < .05) plasma. Fasting arterial (r = 0.72; P = .031) and hepatic venous (r = 0.70; P = .037) concentrations of 2-arachidonoylglycerol were related positively to liver fat content. Analysis of fluxes of 85 different triglycerides showed that the fatty liver overproduces saturated triglycerides. In the plasma FFA fraction in the basal state, the relative amounts of palmitoleate and linoleate were lower and those of stearate and oleate were higher in the hepatic vein than in the artery. Absolute concentrations of all nontriglyceride lipids were comparable in arterialized venous plasma and the hepatic vein both in the basal and insulin-stimulated states.CONCLUSIONS: The human fatty liver takes up 2-arachidonoylglycerol and overproduces triacylglycerols containing saturated fatty acids, which might reflect increased de novo lipogenesis.
  •  
25.
  • Ylipaasto, P., et al. (författare)
  • Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 55:12, s. 3273-3283
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. Methods The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. Results The expression of pro-inflammatory cytokine genes (IL-1-a, IL-1-β and TNF-a) that also mediate cytokineinduced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNArecognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. Conclusions/interpretation The results suggest a distinct, virusstrain- specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy