SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paladini C.) srt2:(2015-2019)"

Sökning: WFRF:(Paladini C.) > (2015-2019)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
  •  
2.
  • Adam, R., et al. (författare)
  • Planck 2015 results IX. Diffuse component separation : CMB maps
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.
  •  
3.
  • Adam, R., et al. (författare)
  • Planck 2015 results X. Diffuse component separation : Foreground maps
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
  •  
4.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XX. Constraints on inflation
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.
  •  
5.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.
  •  
6.
  • Adam, R., et al. (författare)
  • Planck intermediate results XLII. Large-scale Galactic magnetic fields
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.
  •  
7.
  • Cruzalebes, P., et al. (författare)
  • Brightness Asymmetries of Cool Giants and Supergiants Measured with VLTI-AMBER
  • 2015
  • Ingår i: WHY GALAXIES CARE ABOUT AGB STARS III. - : ASTRONOMICAL SOC PACIFIC. - 9781583818794 ; , s. 109-110
  • Konferensbidrag (refereegranskat)abstract
    • We report on a search for asymmetries on the photospheres of 16 giants and supergiants. We found that all targets have surface-brightness asymmetries, but the most prominent ones are found along the upper AGB.
  •  
8.
  • Paladini, C., et al. (författare)
  • Large granulation cells on the surface of the giant star π1 Gruis
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 553:7688, s. 310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs1,2. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun3—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells3, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns4. These properties can be inferred from geometric model fitting5,6,7, but this indirect method does not provide information about the physical origin of the convective cells5,6,7. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type8,9 S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection10,11,12.
  •  
9.
  • Bladh, S., et al. (författare)
  • Tomography of silicate dust around M-type AGB stars I. Diagnostics based on dynamical models
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The heavy mass loss observed in evolved asymptotic giant branch stars is usually attributed to a two-step process: atmospheric levitation by pulsation-induced shock waves, followed by radiative acceleration of newly formed dust grains. Detailed wind models suggest that the outflows of M-type AGB stars may be triggered by photon scattering on Fe-free silicates with grain sizes of about 0.1-1 mu m. As a consequence of the low grain temperature, these Fe-free silicates can condense close to the star, but they do not produce the characteristic mid-IR features that are often observed in M-type AGB stars. However, it is probable that the silicate grains are gradually enriched with Fe as they move away from the star, to a degree where the grain temperature stays below the sublimation temperature, but is high enough to produce emission features.Aims: We investigate whether differences in grain temperature in the inner wind region, which are related to changes in the grain composition, can be detected with current interferometric techniques, in order to put constraints on the wind mechanism.Methods: We use phase-dependent radial structures of the atmosphere and wind of an M-type AGB star, produced with the 1D radiation-hydrodynamical code DARWIN, to investigate if current interferometric techniques can differentiate between the temperature structures that give rise to the same overall spectral energy distribution.Results: The spectral energy distribution is found to be a poor indicator of different temperature profiles and therefore is not a good tool for distinguishing different scenarios of changing grain composition. However, spatially resolved interferometric observations have promising potential. They show signatures even for Fe-free silicates (found at 2-3 stellar radii), in contrast to the spectral energy distribution. Observations with baselines that probe spatial scales of about 4 stellar radii and beyond are suitable for tracing changes in grain composition, since this is where effects of Fe enrichment should be found.
  •  
10.
  • Doan, L., et al. (författare)
  • The extended molecular envelope of the asymptotic giant branch star π 1 Gruis as seen by ALMA: I. Large-scale kinematic structure and CO excitation properties
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The S-type asymptotic giant branch (AGB) star ?1 Gru has a known companion at a separation of 2? 7 (? 400 AU). Previous observations of the circumstellar envelope (CSE) show strong deviations from spherical symmetry. The envelope structure, including an equatorial torus and a fast bipolar outflow, is rarely seen in the AGB phase and is particularly unexpected in such a wide binary system. Therefore a second, closer companion has been suggested, but the evidence is not conclusive. Aims. The aim is to make a 3D model of the CSE and to constrain the density and temperature distribution using new spatially resolved observations of the CO rotational lines. Methods. We have observed the J = 3-2 line emission from 12CO and 13CO using the compact arrays of the Atacama Large Millimeter/submillimeter Array (ALMA). The new ALMA data, together with previously published 12CO J = 2-1 data from the Submillimeter Array (SMA), and the 12CO J = 5-4 and J = 9-8 lines observed with Herschel/Heterodyne Instrument for the Far-Infrared (HIFI), is modeled with the 3D non-LTE radiative transfer code SHAPEMOL. Results. The data analysis clearly confirms the torus-bipolar structure. The 3D model of the CSE that satisfactorily reproduces the data consists of three kinematic components: a radially expanding torus with velocity slowly increasing from 8 to 13 km s-1 along the equator plane; a radially expanding component at the center with a constant velocity of 14 km s-1; and a fast, bipolar outflow with velocity proportionally increasing from 14 km s-1 at the base up to 100 km s-1 at the tip, following a linear radial dependence. The results are used to estimate an average mass-loss rate during the creation of the torus of 7.7 × 10-7 M? yr-1. The total mass and linear momentum of the fast outflow are estimated at 7.3 × 10-4 M? and 9.6 × 1037 g cm s-1, respectively. The momentum of the outflow is in excess (by a factor of about 20) of what could be generated by radiation pressure alone, in agreement with recent findings for more evolved sources. The best-fit model also suggests a 12CO/13CO abundance ratio of 50. Possible shaping scenarios for the gas envelope are discussed.
  •  
11.
  • Doan, Lam, et al. (författare)
  • The extended molecular envelope of the asymptotic giant branchstar π1 Gruis as seen by ALMA : I. Large-scale kinematic structure and CO excitation properties
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The S-type asymptotic giant branch (AGB) star pi(1) Gru has a known companion at a separation of 2 ''.7 (approximate to 400 AU). Previous observations of the circumstellar envelope (CSE) show strong deviations from spherical symmetry. The envelope structure, including an equatorial torus and a fast bipolar outflow, is rarely seen in the AGB phase and is particularly unexpected in such a wide binary system. Therefore a second, closer companion has been suggested, but the evidence is not conclusive.Aims. The aim is to make a 3D model of the CSE and to constrain the density and temperature distribution using new spatially resolved observations of the CO rotational lines.Methods. We have observed the J = 3-2 line emission from (CO)-C-12 and (CO)-C-13 using the compact arrays of the Atacama Large Millimeter/submillimeter Array (ALMA). The new ALMA data, together with previously published (CO)-C-12 J = 2-1 data from the Submillimeter Array (SMA), and the (CO)-C-12 J = 5-4 and J = 9-8 lines observed with Herschel/Heterodyne Instrument for the Far-Infrared (HIFI), is modeled with the 3D non-LTE radiative transfer code SHAPEMOL.Results. The data analysis clearly confirms the torus-bipolar structure. The 3D model of the CSE that satisfactorily reproduces the data consists of three kinematic components: a radially expanding torus with velocity slowly increasing from 8 to 13 km s(-1) along the equator plane; a radially expanding component at the center with a constant velocity of 14 km s(-1); and a fast, bipolar outflow with velocity proportionally increasing from 14 km s(-1) at the base up to 100 km s(-1) at the tip, following a linear radial dependence. The results are used to estimate an average mass-loss rate during the creation of the torus of 7.7 x 10(-7) M-circle dot yr(-1). The total mass and linear momentum of the fast outflow are estimated at 7.3 x 10(-4) M-circle dot and 9.6 x 10(37) g cm s(-1), respectively. The momentum of the outflow is in excess (by a factor of about 20) of what could be generated by radiation pressure alone, in agreement with recent findings for more evolved sources. The best-fit model also suggests a (CO)-C-12/(CO)-C-13 abundance ratio of 50. Possible shaping scenarios for the gas envelope are discussed.
  •  
12.
  • Justtanont, Kay, 1965, et al. (författare)
  • ALMA spectrum of the extreme OH/IR star OH 26.5+0.6
  • 2019
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; , s. 436-437
  • Konferensbidrag (refereegranskat)abstract
    • We present ALMA band 7 data of the extreme OH/IR star, OH 26.5+0.6. In addition to lines of CO and its isotopologues, the circumstellar envelope also exhibits a number of emission lines due to metal-containing molecules, e.g., NaCl and KCl. A lack of C18O is expected, but a non-detection of C17O is puzzling given the strengths of H217O in Herschel spectra of the star. However, a line associated with Si17O is detected. We also report a tentative detection of a gas-phase emission line of MgS. The ALMA spectrum of this object reveals intriguing features which may be used to investigate chemical processes and dust formation during a high mass-loss phase.
  •  
13.
  • Kerschbaum, F., et al. (författare)
  • Rings and filaments : The remarkable detached CO shell of U Antliae
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our goal is to characterize the intermediate age, detached shell carbon star U Antliae morphologically and physically in order to study the mass-loss evolution after a possible thermal pulse.Methods. High spatial resolution ALMA observations of unprecedented quality in thermal CO lines allow us to derive first critical spatial and temporal scales and constrain modeling efforts to estimate mass-loss rates for both the present day as well as the ejection period of the detached shell.Results. The detached shell is remarkably thin, overall spherically symmetric, and shows a barely resolved filamentary substructure possibly caused by instabilities in the interaction zone of winds with different outflow velocities. The expansion age of the detached shell is of the order of 2700 yr and its overall width indicates a high expansion-velocity and high mass-loss period of only a few hundred years at an average mass-loss rate of approximate to 10(-5) M-circle dot yr(-1). The post-high-mass-loss-rate-epoch evolution of U Ant shows a significant decline to a substantially lower gas expansion velocity and a mass-loss rate amounting to 4 x 10(-8) M-circle dot yr(-1), at present being consistent with evolutionary changes as predicted for the period between thermal pulses.
  •  
14.
  • Lykou, F., et al. (författare)
  • Dissecting the AGB star L-2 Puppis : a torus in the making
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The circumstellar environment of L-2 Pup, an oxygen-rich semiregular variable, was observed to understand the evolution of mass loss and the shaping of ejecta in the late stages of stellar evolution. Methods. High-angular resolution observations from a single 8 m telescope were obtained using aperture masking in the near-infrared (1.64, 2.30 and 3.74 mu m) on the NACO/VLT, both in imaging and polarimetric modes. Results. The aperture-masking images of L-2 Pup at 2.30 mu m show a resolved structure that resembles a toroidal structure with a major axis of similar to 140 milliarcseconds (mas) and an east-west orientation. Two clumps can be seen on either side of the star, similar to 65 mas from the star, beyond the edge of the circumstellar envelope (estimated diameter is similar to 27 mas), while a faint, hook-like structure appear toward the northeast. The patterns are visible both in the imaging and polarimetric mode, although the latter was only used to measure the total intensity (Stokes I). The overall shape of the structure is similar at the 3.74 mu m pseudo-continuum (dust emission), where the clumps appear to be embedded within a dark, dusty lane. The faint, hook-like patterns are also seen at this wavelength, extending northeast and southwest with the central, dark lane being an apparent axis of symmetry. We interpret the structure as a circumstellar torus with inner radius of 4.2 au. With a rotation velocity of 10 kms(-1) as suggested by the SiO maser profile, we estimate a stellar mass of 0.7 M-circle dot.
  •  
15.
  • Lykou, F., et al. (författare)
  • Unraveling Disks in AGB Stars
  • 2015
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759819072 ; 71-72, s. 217-222
  • Konferensbidrag (refereegranskat)abstract
    • It is commonly accepted that asymmetries found in the post-AGB stars and planetary nebulae should originate as early as during the AGB phase. We present results from our high-angular resolution observing programs, with an aperture masking technique on the VLT, of a sample of evolved stars that were known to present asymmetries at larger spatial scales (e.g. jets, torii and/or bipolar nebulae). Disk-like structures have been found in the vicinity of at least two of these stars.
  •  
16.
  • Paladini, C., et al. (författare)
  • The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium (ISM) via stellar yields. Nevertheless, many questions are still unsolved, one of which is the geometry of the mass-loss process. Aims. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. Methods. For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Results. Asymmetries are detected for the following five stars: R Leo, RT Vir, ?1Gruis, omi Ori, and R Crt. All the objects are O-rich or S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, i.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: More dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of the U Ant and S Sct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation.
  •  
17.
  • Paladini, C., et al. (författare)
  • VLTI/MIDI Large Program: AGB Stars at Different Spatial Scales
  • 2015
  • Ingår i: Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna, Austria, JUL 28-AUG 01, 2014. - 9781583818794 ; 497, s. 97-102
  • Konferensbidrag (refereegranskat)abstract
    • We have observed a sample of Asymptotic Giant Branch (AGB) stars from the Herschel Mass-loss of Evolved StarS (MESS) program with the VLTI MID infrared Interferometric instrument (MIDI). The program aims at providing insight to the atmospheres of those stars, to be able to understand the role of the mass-loss process at different spatial scales. We obtained visibilities and spectra of fourteen objects with different chemistries and variability classes. These observations, together with data we retrieved from the archive, allow us to characterize not only the geometry of the dust forming region, but in some cases also the time variability in the N band. As previously reported in the literature, we confirm the detection of spectroscopic but not interferometric variability. This result has implications on the size of the structures involved in the dust-formation process. We also report two cases of asymmetric structures; the nature of these structures will be clearly identified only with the second generation VLTI instrument MATISSE.
  •  
18.
  • Rau, G., et al. (författare)
  • Into the Modelling of RU Vir
  • 2015
  • Ingår i: WHY GALAXIES CARE ABOUT AGB STARS III. - : ASTRONOMICAL SOC PACIFIC. ; , s. 137-138
  • Konferensbidrag (refereegranskat)abstract
    • We present an attempt to model the atmosphere of the carbon-rich Mira star RU Vir, using different techniques including spectroscopy, photometry, and interferometry. A radiative transfer code and hydrostatic model atmospheres were used for a preliminary study. To investigate the dynamic processes happening in RU Vir, dynamic model atmospheres were compared to new MIDI/VLTI observations obtained in April 2014, and SiC opacities were added.
  •  
19.
  • Rau, G., et al. (författare)
  • The adventure of carbon stars : Observations and modeling of a set of C-rich AGB stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Modeling stellar atmospheres is a complex and intriguing task in modern astronomy. A systematic comparison of models with multi-technique observations is the only efficient way to constrain the models. Aims. We intend to perform self-consistent modeling of the atmospheres of six carbon-rich AGB stars (R Lep, R Vol, Y Pav, AQ Sgr, U Hya, and X TrA) with the aim of enlarging the knowledge of the dynamic processes occurring in their atmospheres. Methods. We used VLTI/MIDI interferometric observations, in combination with spectro-photometric data, and compared them with self-consistent, dynamic model atmospheres. Results. We found that the models can reproduce spectral energy distribution (SED) data well at wavelengths longer than 1 mu m, and the interferometric observations between 8 mu m and 10 mu m. Discrepancies observed at wavelengths shorter than 1 mu m in the SED, and longer than 10 mu m in the visibilities, could be due to a combination of data- and model-related effects. The models best fitting the Miras are significantly extended, and have a prominent shell-like structure. On the contrary, the models best fitting the non-Miras are more compact, showing lower average mass loss. The mass loss is of episodic or multi-periodic nature but causes the visual amplitudes to be notably larger than the observed ones. A number of stellar parameters were derived from the model fitting: T-Ross, L-Ross, M, C/O, and. M. Our findings agree well with literature values within the uncertainties. TRoss, and LRoss are also in good agreement with the temperature derived from the angular diameter T(theta((V-K))) and the bolometric luminosity from the SED fitting L-bol, except for AQ Sgr. The possible reasons are discussed in the text. Finally, theta(Ross) and theta((V-K)) agree with one another better for the Miras than for the non-Miras targets, which is probably connected to the episodic nature of the latter models. We also located the stars in the H-R diagram, comparing them with evolutionary tracks. We found that the main derived properties (L, T-eff, C/O ratios and stellar masses) from the model fitting are in good agreement with TP-AGB evolutionary calculations for carbon stars carried out with the COLIBRI code.
  •  
20.
  • Wittkowski, M., et al. (författare)
  • Aperture synthesis imaging of the carbon AGB star R Sculptoris: Detection of a complex structure and a dominating spot on the stellar disk
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present near-infrared interferometry of the carbon-rich asymptotic giant branch (AGB) star R Sculptoris (R Scl). Methods. We employ medium spectral resolution K-band interferometry obtained with the instrument AMBER at the Very Large Telescope Interferometer (VLTI) and H-band low spectral resolution interferometric imaging observations obtained with the VLTI instrument PIONIER. We compare our data to a recent grid of dynamic atmosphere and wind models. We compare derived fundamental parameters to stellar evolution models. Results. The visibility data indicate a broadly circular resolved stellar disk with a complex substructure. The observed AMBER squared visibility values show drops at the positions of CO and CN bands, indicating that these lines form in extended layers above the photosphere. The AMBER visibility values are best fit by a model without a wind. The PIONIER data are consistent with the same model. We obtain a Rosseland angular diameter of 8.9 ± 0.3 mas, corresponding to a Rosseland radius of 355 ± 55 R?, an effective temperature of 2640 ± 80 K, and a luminosity of log L/L? = 3.74 ± 0.18. These parameters match evolutionary tracks of initial mass 1.5 ± 0.5 M? and current mass 1.3 ± 0.7 M?. The reconstructed PIONIER images exhibit a complex structure within the stellar disk including a dominant bright spot located at the western part of the stellar disk. The spot has an H-band peak intensity of 40% to 60% above the average intensity of the limb-darkening-corrected stellar disk. The contrast between the minimum and maximum intensity on the stellar disk is about 1:2.5. Conclusions. Our observations are broadly consistent with predictions by dynamic atmosphere and wind models, although models with wind appear to have a circumstellar envelope that is too extended compared to our observations. The detected complex structure within the stellar disk is most likely caused by giant convection cells, resulting in large-scale shock fronts, and their effects on clumpy molecule and dust formation seen against the photosphere at distances of 2-3 stellar radii. © ESO, 2017.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy