SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parmentier Frans Jan W.) srt2:(2015-2019)"

Sökning: WFRF:(Parmentier Frans Jan W.) > (2015-2019)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  •  
2.
  • Parmentier, Frans Jan W., et al. (författare)
  • Vulnerability and resilience of the carbon exchange of a subarctic peatland to an extreme winter event
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning - a reversal of the greening trend of the region - and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affected ecosystems. In this study, we report eddy covariance fluxes of CO2 from a peatland in northern Norway and show that vegetation CO2 uptake was delayed and reduced in the summer of 2014 following an extreme winter event earlier that year. Strong frost in the absence of a protective snow cover - its combined intensity unprecedented in the local climate record - caused severe dieback of the dwarf shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along ∼1000 km of coastal Norway, showing the widespread impact of this event. Our results indicate that gross primary production (GPP) exhibited a delayed response to temperature following snowmelt. From snowmelt up to the peak of summer, this reduced carbon uptake by 14 (0-24) g C m-2 (∼12% of GPP in that period) - similar to the effect of interannual variations in summer weather. Concurrently, remotely-sensed NDVI dropped to the lowest level in more than a decade. However, bulk photosynthesis was eventually stimulated by the warm and sunny summer, raising total GPP. Species other than the vulnerable shrubs were probably resilient to the extreme winter event. The warm summer also increased ecosystem respiration, which limited net carbon uptake. This study shows that damage from a single extreme winter event can have an ecosystem-wide impact on CO2 uptake, and highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict trends in vegetation productivity and carbon sequestration in the Arctic and sub-Arctic.
  •  
3.
  • Saunois, M., et al. (författare)
  • The global methane budget 2000–2012
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
4.
  • Box, Jason E., et al. (författare)
  • Key indicators of Arctic climate change: 1971–2017
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Key observational indicators of climate change in the Arctic, most spanning a 47 year period (1971–2017) demonstrate fundamental changes among nine key elements of the Arctic system. We find that, coherent with increasing air temperature, there is an intensification of the hydrological cycle, evident from increases in humidity, precipitation, river discharge, glacier equilibrium line altitude and land ice wastage. Downward trends continue in sea ice thickness (and extent) and spring snow cover extent and duration, while near-surface permafrost continues to warm. Several of the climate indicators exhibit a significant statistical correlation with air temperature or precipitation, reinforcing the notion that increasing air temperatures and precipitation are drivers of major changes in various components of the Arctic system. To progress beyond a presentation of the Arctic physical climate changes, we find a correspondence between air temperature and biophysical indicators such as tundra biomass and identify numerous biophysical disruptions with cascading effects throughout the trophic levels. These include: increased delivery of organic matter and nutrients to Arctic near‐coastal zones; condensed flowering and pollination plant species periods; timing mismatch between plant flowering and pollinators; increased plant vulnerability to insect disturbance; increased shrub biomass; increased ignition of wildfires; increased growing season CO2 uptake, with counterbalancing increases in shoulder season and winter CO2 emissions; increased carbon cycling, regulated by local hydrology and permafrost thaw; conversion between terrestrial and aquatic ecosystems; and shifting animal distribution and demographics. The Arctic biophysical system is now clearly trending away from its 20th Century state and into an unprecedented state, with implications not only within but beyond the Arctic. The indicator time series of this study are freely downloadable at AMAP.no.
  •  
5.
  • Chadburn, Sarah E., et al. (författare)
  • Carbon stocks and fluxes in the high latitudes : using site-level data to evaluate Earth system models
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5143-5169
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
  •  
6.
  • Christensen, Torben Røjle, et al. (författare)
  • Tracing the climate signal : mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural methane emissions are noticeably influenced by warming of cold arctic ecosystems and permafrost. An evaluation specifically of Arctic natural methane emissions in relation to our ability to mitigate anthropogenic methane emissions is needed. Here we use empirical scenarios of increases in natural emissions together with maximum technically feasible reductions in anthropogenic emissions to evaluate their potential influence on future atmospheric methane concentrations and associated radiative forcing (RF). The largest amplification of natural emissions yields up to 42% higher atmospheric methane concentrations by the year 2100 compared with no change in natural emissions. The most likely scenarios are lower than this, while anthropogenic emission reductions may have a much greater yielding effect, with the potential of halving atmospheric methane concentrations by 2100 compared to when anthropogenic emissions continue to increase as in a business-as-usual case. In a broader perspective, it is shown that man-made emissions can be reduced sufficiently to limit methane-caused climate warming by 2100 even in the case of an uncontrolled natural Arctic methane emission feedback, but this requires a committed, global effort towards maximum feasible reductions.
  •  
7.
  • Jammet, Mathilde, et al. (författare)
  • Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5189-5216
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80% of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33% of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.
  •  
8.
  • Lund, Magnus, et al. (författare)
  • Low impact of dry conditions on the CO2 exchange of a Northern-Norwegian blanket bog
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink functioning. This study presents a 4.5 year record of land-atmosphere carbon dioxide (CO2) exchange from the Andoya blanket bog in northern Norway. Compared with other peatlands, the Andoya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on the CO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andoya blanket bog retained its C uptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate.
  •  
9.
  • Parmentier, Frans Jan W, et al. (författare)
  • A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere
  • 2017
  • Ingår i: Ambio: a Journal of the Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 46, s. 53-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
  •  
10.
  • Parmentier, Frans Jan W. (författare)
  • Ocean-land interactions and the Arctic carbon cycle
  • 2018
  • Ingår i: The Routledge Handbook of the Polar Regions. - 9781138843998 - 9781317549574 - 9781315730639 ; , s. 478-491
  • Bokkapitel (refereegranskat)abstract
    • This chapter focuses on the Arctic since ocean-land interactions are more important for the Arctic than the Antarctic carbon cycle. It explores the complexity of connections between the ocean and land of the North Pole region, and possible impacts on greenhouse gas exchange and lateral carbon flows thereof. Ocean-land interactions in the Arctic integrate the terrestrial and marine environments. The Arctic is a source of methane and higher temperatures stimulate methane-producing microbes in the ground. Higher temperatures affect the terrestrial carbon cycle through altered plant productivity, increased respiration, and higher methane emissions. The impact of sea ice decline on the carbon cycle would be very dissimilar between the two regions due to diametric differences. While Antarctica is a frozen continent with little vegetation surrounded by ocean, the Arctic Ocean is a dynamic environment surrounded by land with vast expanses of vegetation, and an enormous amount of carbon locked away in the permafrost.
  •  
11.
  • Pirk, Norbert, et al. (författare)
  • Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:4, s. 903-912
  • Tidskriftsartikel (refereegranskat)abstract
    • The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78 degrees N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber measurements could be used for purposes beyond the estimation of the net gas flux. This shows that while linear and curvilinear calculation schemes can provide similar net fluxes, only curvilinear models open additional possibilities for high-resolution automatic chamber measurements.
  •  
12.
  • Pirk, Norbert, et al. (författare)
  • Snowpack fluxes of methane and carbon dioxide from high Arctic tundra
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 121:11, s. 2886-2900
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra.
  •  
13.
  • Pirk, Norbert, et al. (författare)
  • Spatial variability of CO2 uptake in polygonal tundra : Assessing low-frequency disturbances in eddy covariance flux estimates
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:12, s. 3157-3169
  • Tidskriftsartikel (refereegranskat)abstract
    • The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gCm-2 to the annual CO22 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (82 gCm2). Due to differences in light-use efficiency, wetter areas with lowcentered polygons sequestered 47% more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra.
  •  
14.
  • Pirk, Norbert, et al. (författare)
  • Toward a statistical description of methane emissions from arctic wetlands
  • 2017
  • Ingår i: Ambio: a Journal of Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 46, s. 70-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.
  •  
15.
  • Qiu, Chunjing, et al. (författare)
  • ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:2, s. 497-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 Combining double low line 0.76; Nash-Sutcliffe modeling efficiency, MEF Combining double low line 0.76) and ecosystem respiration (ER, r2 Combining double low line 0.78, MEF Combining double low line 0.75), with lesser accuracy for latent heat fluxes (LE, r2 Combining double low line 0.42, MEF Combining double low line 0.14) and and net ecosystem CO2 exchange (NEE, r2 Combining double low line 0.38, MEF Combining double low line 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2<0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy