SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pepitone Kevin Dr 1988 ) srt2:(2023)"

Sökning: WFRF:(Pepitone Kevin Dr 1988 ) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galvin, Tom, et al. (författare)
  • Characterisation of SiC Varistor Quench Protection Operating at 4 Kelvin for Use With Superconducting Magnets
  • 2023
  • Ingår i: IEEE transactions on applied superconductivity (Print). - : IEEE. - 1051-8223 .- 1558-2515. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon carbide (SiC) composite high-energy varistors have been demonstrated as a viable alternative to linear resistors as energy extraction devices during an abrupt loss of superconductivity in a magnet, called a quench. These have typically been installed external to the cryostat at ambient temperatures, but for some superconducting magnets it may be beneficial to mount the varistors within the cryostat in vacuum, a gaseous environment, or submerged in liquid cryogens. Varistors are semiconductors and therefore exhibit a temperature-dependent voltage-current relationship, so characterising their behaviour at low temperatures is important to predict their energy extraction behaviour. In this paper we present characterisation data of SiC varistor devices from 4-300 K: voltage-current characteristics, thermal conductivity, specific heat capacity, thermal expansion, and flexural strength. These varistors are a candidate for protection at 1.9 K of the MCBY magnets, currently being built at Uppsala University for CERN.
  •  
2.
  • Pepitone, Kevin, Dr, 1988-, et al. (författare)
  • Design and Fabrication of a Canted-Cosine-Theta Double Aperture Orbit Corrector Dipole for the LHC
  • 2023
  • Ingår i: IEEE transactions on applied superconductivity (Print). - : IEEE. - 1051-8223 .- 1558-2515. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A prototype CCT dipole magnet developed by a collaboration between Swedish universities, Swedish industry and CERN will be tested at Uppsala University. This 1 m long double-aperture magnet can provide a field strength of 3.3 T at 85 A in a 70 mm aperture with an integrated field of 2.8 Tm. It is intended to replace the current LHC orbit corrector magnets which are reaching the end of their expected life due to the radiation load. The new magnet is designed to handle the radiation dose of the upgrade to the high-luminosity LHC, which will deliver about ten times the current radiation dose. It must therefore be more resistant to radiation and meet strict requirements in terms of electrical insulation while matching the original field quality and self-protective capability, mechanical volume, and maximum excitation current. This paper will present the latest of the design and manufacturing work, including the results of simulations of the mechanical field and the mechanical stress. Details of the various tests performed before machining the parts are also presented.
  •  
3.
  • Verra, L., et al. (författare)
  • Development of the self-modulation instability of a relativistic proton bunch in plasma
  • 2023
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 30:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy