SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peron I.) "

Sökning: WFRF:(Peron I.)

  • Resultat 1-25 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Adams, C. B., et al. (författare)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
3.
  • Abdalla, H., et al. (författare)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
4.
  • Abdalla, H., et al. (författare)
  • An extreme particle accelerator in the Galactic plane : HESS J1826-130
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02 (stat)degrees stat degrees +/- 0.05 (sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2 (+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
  •  
5.
  • Acharyya, A., et al. (författare)
  • Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2 degrees .2 away from the best -fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high -flux state in the optical, ultraviolet, X-ray, and GeV ?-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the ?-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and ?-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed ?-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power.
  •  
6.
  • Abdalla, H., et al. (författare)
  • Evidence of 100 TeV gamma-ray emission from HESS J1702-420 : A new PeVatron candidate
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few x 10(15) eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a threedimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the gamma-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at gamma-ray energies >10 GeV. Results. We report the detection of gamma-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5:4 sigma confidence level. The power law gamma-ray spectrum of HESS J1702-420A extends with an index of Gamma = 1:53 +/- 0:19(stat) +/- 0:20(sys) and without curvature up to the energy band 64 113 TeV, in which it was detected by H.E.S.S. at a 4:0 sigma confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2:08 +/- 0:49(stat) +/- 0:62(sys)) x 10(-13) cm(-2) s(-1) and a radius of (0:06 +/- 0:02(stat) +/- 0:03(sys))degrees, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of = 2:62 +/- 0:10(stat) +/- 0:20(sys) and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-o ff energy of the particle distribution powering HESS J1702-420A is found to be higher than 0:5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly di fferent morphologies and spectral indices, both detected at >5 sigma confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4:0 sigma confidence level in the energy band 64 113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard gamma-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
  •  
7.
  • Abdalla, H., et al. (författare)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
8.
  • Abdalla, H., et al. (författare)
  • LMC N132D : A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime. Aims. The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR. Methods. We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5 sigma detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included. Results. We unambiguously detect N132D at VHE with a significance of 5.7 sigma. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission. Conclusions. SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.
  •  
9.
  • Abdalla, H., et al. (författare)
  • Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow
  • 2021
  • Ingår i: Science. - : American Association of Advancement in Science. - 0036-8075 .- 1095-9203. ; 372:6546, s. 1081-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very- high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 +/- 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma- ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.
  •  
10.
  • Abdalla, H., et al. (författare)
  • Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with HESS
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 918:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmological N-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter (DM) subhalos. These subhalos could shine in gamma-rays and eventually be detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-Large Area Telescope Objects (UFOs) to identify them as possible tera-electron-volt-scale DM subhalo candidates. We search for very-high-energy (E greater than or similar to 100 GeV) gamma-ray emissions using H.E.S.S. observations toward four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any data set of the four observed UFOs or in the combined UFO data set, strong constraints are derived on the product of the velocity-weighted annihilation cross section sigma v by the J factor for the DM models. The 95% confidence level observed upper limits derived from combined H.E.S.S. observations reach sigma vJ values of 3.7 x 10(-5) and 8.1 x 10(-6) GeV(2 )cm(-2 )s(-1) in the W (+) W (-) and tau (+) tau (-) channels, respectively, for a 1 TeV DM mass. Focusing on thermal weakly interacting massive particles, the H.E.S.S. constraints restrict the J factors to lie in the range 6.1 x 10(19)-2.0 x 10(21) GeV(2 )cm(-5) and the masses to lie between 0.2 and 6 TeV in the W (+) W (-) channel. For the tau (+) tau (-) channel, the J factors lie in the range 7.0 x 10(19)-7.1 x 10(20) GeV(2 )cm(-5) and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the J-factor distribution for Milky Way-sized galaxies, the DM models with masses >0.3 TeV for the UFO emissions can be ruled out at high confidence level.
  •  
11.
  • Abdalla, H., et al. (författare)
  • Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting Phase
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 919:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetar hyperflares are the most plausible explanation for fast radio bursts (FRBs)-enigmatic powerful radio pulses with durations of several milliseconds and high brightness temperatures. The first observational evidence for this scenario was obtained in 2020 April when an FRB was detected from the direction of the Galactic magnetar and soft gamma-ray repeater SGR 1935+2154. The FRB was preceded by two gamma-ray outburst alerts by the BAT instrument aboard the Swift satellite, which triggered follow-up observations by the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observed SGR 1935+2154 for 2 hr on 2020 April 28. The observations are coincident with X-ray bursts from the magnetar detected by INTEGRAL and Fermi-GBM, thus providing the first very high energy gamma-ray observations of a magnetar in a flaring state. High-quality data acquired during these follow-up observations allow us to perform a search for short-time transients. No significant signal at energies E > 0.6 TeV is found, and upper limits on the persistent and transient emission are derived. We here present the analysis of these observations and discuss the obtained results and prospects of the H.E.S.S. follow-up program for soft gamma-ray repeaters.
  •  
12.
  • Abdallah, H., et al. (författare)
  • Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with HESS
  • 2021
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 103:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well-measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the five-telescopes of the high energy stereoscopic system observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels, as well as the prompt gamma gamma emission. For the tau+tau- channel, the limits reach a value of about 4 x 10-22 cm3 s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma gamma channel, the upper limit reaches a value of about 5 x 10-24 cm3 s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200, with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
  •  
13.
  • Aharonian, F., et al. (författare)
  • A deep spectromorphological study of the ϒ-ray emission surrounding the young massive stellar cluster Westerlund 1
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EPD Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the gamma-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (similar to 2 degrees diameter) gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the gamma-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point.
  •  
14.
  • Aharonian, F., et al. (författare)
  • Constraining the cosmic-ray pressure in the inner Virgo Cluster using HESS observations of M 87
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of the gamma-ray emission from M 87 is currently a matter of debate. This work aims to localize the very high-energy (VHE; 100 GeV - 100 TeV) gamma-ray emission from M 87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M 87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intracluster medium and allow us to investigate the role of cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. The High Energy Stereoscopic System (H.E.S.S.) telescopes are sensitive to VHE gamma rays and have been used to observe M 87 since 2004. We utilized a Bayesian block analysis to identify M 87 emission states with H.E.S.S. observations from 2004 to 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended (≳1 kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120 h low-state data and find no significant gamma-ray extension. Therefore, we derive for the low state an upper limit of 58″(corresponding to ≈4.6 kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at the 99.7% confidence level. Our results exclude the radio lobes (≈30 kpc) as the principal component of the VHE gamma-ray emission from the low state of M 87. The gamma-ray emission is compatible with a single emission region at the radio core of M 87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio to XCR, max. ≲ 0.32 and the total energy in cosmic-ray protons to UCR  ≲  5  ×  1058 erg in the inner 20 kpc of the Virgo Cluster for an assumed cosmic-ray proton power-law distribution in momentum with spectral index αp = 2.1
  •  
15.
  • Aharonian, F., et al. (författare)
  • Detection of extended gamma-ray emission around the Geminga pulsar with HESS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales greater than or similar to 2 degrees poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 degrees in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8 +/- 0.7) x 10-12 cm-2 s-1 TeV-1 at 1 TeV is obtained within a 1 degrees radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D-0 = 7.6-1.2+1.5 x 1027 cm2 s-1, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.
  •  
16.
  • Aharonian, F., et al. (författare)
  • Discovery of a radiation component from the Vela pulsar reaching 20 teraelectronvolts
  • 2023
  • Ingår i: Nature Astronomy. - : Nature Publishing Group. - 2397-3366. ; 7:11, s. 1341-1350
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray observations have established energetic isolated pulsars as outstanding particle accelerators and antimatter factories. However, many questions are still open regarding the acceleration and radiation processes involved, as well as the locations where they occur. The radiation spectra of all gamma-ray pulsars observed to date show strong cutoffs or a break above energies of a few gigaelectronvolts. Using the High Energy Stereoscopic System's Cherenkov telescopes, we discovered a radiation component from the Vela pulsar which emerges beyond this generic cutoff and extends up to energies of at least 20 teraelectronvolts. This is an order of magnitude larger than in the case of the Crab pulsar, the only other pulsar detected in the teraelectronvolt energy range. Our results challenge the state-of-the-art models for the high-energy emission of pulsars. Furthermore, they pave the way for investigating other pulsars through their multiteraelectronvolt emission, thereby imposing additional constraints on the acceleration and emission processes in their extreme energy limit. The H.E.S.S. gamma-ray observatory has observed gamma rays with energies of at least 20 TeV from a pulsar, an energy regime that is hard to reconcile with the existing theories of gamma-ray production for such objects.
  •  
17.
  • Aharonian, F., et al. (författare)
  • Evidence for γ-ray emission from the remnant of Kepler’s supernova based on deep H.E.S.S. observations
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations with imaging atmospheric Cherenkov telescopes (IACTs) have enhanced our knowledge of nearby supernova (SN) remnants with ages younger than 500 yr by establishing Cassiopeia A and the remnant of Tycho's SN as very-high-energy (VHE) gamma-ray sources. The remnant of Kepler's SN, which is the product of the most recent naked-eye SN in our Galaxy, is comparable in age to the other two, but is significantly more distant. If the gamma-ray luminosities of the remnants of Tycho's and Kepler's SNe are similar, then the latter is expected to be one of the faintest gamma-ray sources within reach of the current generation TACT arrays. Here we report evidence at a statistical level of 4.6 sigma for a VHE signal from the remnant of Kepler's SN based on deep observations by the High Energy Stereoscopic System (H.E.S.S.) with an exposure of 152 h. The measured integral flux above an energy of 226 GeV is similar to 0.3% of the flux of the Crab Nebula. The spectral energy distribution (SED) reveals a gamma-ray emitting component connecting the VHE emission observed with H.E.S.S. to the emission observed at GeV energies with Fermi-LAT. The overall SED is similar to that of the remnant of Tycho's SN, possibly indicating the same nonthermal emission processes acting in both these young remnants of thermonuclear SNe.
  •  
18.
  • Aharonian, F., et al. (författare)
  • HESS Follow-up Observations of GRB 221009A
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • GRB 221009A is the brightest gamma-ray burst (GRB) ever detected. To probe the very-high-energy (VHE; >100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hr after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of f(UL)(95%)=9.7x10(-12)ergcm(-2)s(-1) E-thr = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the spectral energy distribution occurring above the X-ray band. Compared to the VHE-bright GRB 190829A, the upper limits for GRB 221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB 221009A, effectively ruling out an IC-dominated scenario.
  •  
19.
  • Aharonian, F., et al. (författare)
  • Search for the evaporation of primordial black holes with HESS
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Primordial Black Holes (PBHs) are hypothetical black holes predicted to have been formed from density fluctuations in the early Universe. PBHs with an initial mass around 1014-1015 g are expected to end their evaporation at present times in a burst of particles and very-high-energy (VHE) gamma rays. Those gamma rays may be detectable by the High Energy Stereoscopic System (H.E.S.S.), an array of imaging atmospheric Cherenkov telescopes. This paper reports on the search for evaporation bursts of VHE gamma rays with H.E.S.S., ranging from 10 to 120 seconds, as expected from the final stage of PBH evaporation and using a total of 4816 hours of observations. The most constraining upper limit on the burst rate of local PBHs is 2000 pc-3 yr-1 for a burst interval of 120 seconds, at the 95% confidence level. The implication of these measurements for PBH dark matter are also discussed.
  •  
20.
  • Aharonian, F., et al. (författare)
  • The Vanishing of the Primary Emission Region in PKS 1510-089
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 952:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2021 July, PKS 1510-089 exhibited a significant flux drop in the high-energy & gamma;-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy & gamma;-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy & gamma;-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy & gamma;-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line of sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images.
  •  
21.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
22.
  • Abdalla, H., et al. (författare)
  • H.E.S.S. Follow-up Observations of Binary Black Hole Coalescence Events during the Second and Third Gravitational-wave Observing Runs of Advanced LIGO and Advanced Virgo
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observations of four well-localized binary black hole (BBH) mergers by the High Energy Stereoscopic System (H.E.S.S.) during the second and third observing runs of Advanced LIGO and Advanced Virgo, O2 and O3. H.E.S.S. can observe 20 deg(2) of the sky at a time and follows up gravitational-wave (GW) events by "tiling" localization regions to maximize the covered localization probability. During O2 and O3, H.E.S.S. observed large portions of the localization regions, between 35% and 75%, for four BBH mergers (GW170814, GW190512_180714, GW190728_064510, and S200224ca). For these four GW events, we find no significant signal from a pointlike source in any of the observations, and we set upper limits on the very high energy (>100 GeV) gamma-ray emission. The 1-10 TeV isotropic luminosity of these GW events is below 10(45) erg s(-1) at the times of the H.E.S.S. observations, around the level of the low-luminosity GRB 190829A. Assuming no changes are made to how follow-up observations are conducted, H.E.S.S. can expect to observe over 60 GW events per year in the fourth GW observing run, O4, of which eight would be observable with minimal latency.
  •  
23.
  • Aharonian, F., et al. (författare)
  • Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and HESS Blazar Observations
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 950:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron-positron pairs, which can subsequently initiate electromagnetic cascades. The gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-the-art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B > 7.1 x 10(-16) G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 10(4) (10(7)) yr, IGMF strengths below 1.8 x 10(-14) G (3.9 x 10(-14) G) are excluded, which rules out specific models for IGMF generation in the early universe.
  •  
24.
  • Aharonian, F., et al. (författare)
  • Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi
  • 2022
  • Ingår i: Science. - : American Association for Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6588, s. 77-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy [VHE: greater than or similar to 100 giga-electron volts] gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.
  •  
25.
  • Del Dotto, V., et al. (författare)
  • SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder
  • 2020
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 130:1, s. 108-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single-strand binding protein (SSBP1) in 4 families with dominant and 1 with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect the amount of SSBP1 protein and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids, and 7S-DNA amounts as well as mtDNA replication, affecting replisome machinery. The variable mtDNA depletion in cells was reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits, and complex amount and assembly. mtDNA depletion and cytochrome c oxidase-negative cells were found ex vivo in biopsies of affected tissues, such as kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by WT mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as a cause of human pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy