SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Przedborski Serge E.) "

Search: WFRF:(Przedborski Serge E.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Petersén, Åsa, et al. (author)
  • Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration
  • 2001
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 10:12, s. 1243-1254
  • Journal article (peer-reviewed)abstract
    • Huntington's disease (HD) is caused by an expanded CAG repeat in exon 1 of the gene coding for the huntingtin protein. The cellular pathway by which this mutation induces HD remains unknown, although alterations in protein degradation are involved, To study intrinsic cellular mechanisms involved, To study Intrinsic to the mutation, we examined dissociated postnatally derived cultures of striatal neurons from transgenic mice expressing exon 1 of the human HD gene carrying a CAG repeat expansion. While there was no difference in cell death between wild-type and mutant littermate-derived cultures, the mutant striatal neurons exhibited elevated cell death following a single exposure to a neurotoxic concentration of dopamine, The mutant neurons exposed to dopamine also exhibited lysosome-associated responses including induction of autophagic granules and electron-dense lysosomes, The autophagic/lysosomal compartments co-localized with high levels of oxygen radicals in living neurons, and ubiquitin. The results suggest that the combination of mutant huntingtin and a source of oxyradical stress (provided in this case by dopamine) induces autophagy and may underlie the selective cell death characteristic of HD.
  •  
3.
  • Wray, Selina, et al. (author)
  • Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research
  • 2012
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:8
  • Journal article (peer-reviewed)abstract
    • Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view