SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reimers C.) srt2:(2020-2024)"

Sökning: WFRF:(Reimers C.) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leleu, A., et al. (författare)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
2.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
3.
  • Maxted, P. F. L., et al. (författare)
  • Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using pycheops
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:1, s. 77-104
  • Tidskriftsartikel (refereegranskat)abstract
    • CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that transit nearby stars using ultrahigh precision photometry. Here, we report the analysis of transits observed by CHEOPS during its Early Science observing programme for four well-known exoplanets: GJ 436 b, HD 106315 b, HD 97658 b, and GJ 1132 b. The analysis is done using pycheops, an open-source software package we have developed to easily and efficiently analyse CHEOPS light-curve data using state-of-the-art techniques that are fully described herein. We show that the precision of the transit parameters measured using CHEOPS is comparable to that from larger space telescopes such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis to derive new constraints on the internal structure of these four exoplanets.
  •  
4.
  • Morgado, B. E., et al. (författare)
  • A stellar occultation by the transneptunian object (50000) Quaoar observed by CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillation. Aims. Using ESA's CHEOPS space telescope, we observed a stellar occultation by the transneptunian object (50000) Quaoar. We compare the obtained chord with previous occultations by this object and determine its astrometry with sub-milliarcsecond precision. Also, we determine upper limits to the presence of a global methane atmosphere on the occulting body. Methods. We predicted and observed a stellar occultation by Quaoar using the CHEOPS space telescope. We measured the occultation light curve from this dataset and determined the dis- and reappearance of the star behind the occulting body. Furthermore, a ground-based telescope in Australia was used to constrain Quaoar's limb. Combined with results from previous works, these measurements allowed us to obtain a precise position of Quaoar at the occultation time. Results. We present the results obtained from the first stellar occultation by a transneptunian object using a space telescope orbiting Earth; it was the occultation by Quaoar observed on 2020 June 11. We used the CHEOPS light curve to obtain a surface pressure upper limit of 85 nbar for the detection of a global methane atmosphere. Also, combining this observation with a ground-based observation, we fitted Quaoar's limb to determine its astrometric position with an uncertainty below 1.0 mas. Conclusions. This observation is the first of its kind, and it shall be considered as a proof of concept of stellar occultation observations of transneptunian objects with space telescopes orbiting Earth. Moreover, it shows significant prospects for the James Webb Space Telescope.
  •  
5.
  • Pagano, I., et al. (författare)
  • Constraining the reflective properties of WASP-178 b using CHEOPS photometry
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multiwavelength photometry of the secondary eclipses of extrasolar planets is able to disentangle the reflected and thermally emitted light radiated from the planetary dayside. Based on this, we can measure the planetary geometric albedo Ag, which is an indicator of the presence of clouds in the atmosphere, and the recirculation efficiency ϵ, which quantifies the energy transport within the atmosphere. Aims. We measure Ag and ϵ for the planet WASP-178 b, a highly irradiated giant planet with an estimated equilibrium temperature of 2450 K. Methods. We analyzed archival spectra and the light curves collected by CHEOPS and TESS to characterize the host WASP-178, refine the ephemeris of the system, and measure the eclipse depth in the passbands of the two telescopes. Results. We measured a marginally significant eclipse depth of 70 ± 40 ppm in the TESS passband, and a statistically significant depth of 70 ± 20 ppm in the CHEOPS passband. Conclusions. Combining the eclipse-depth measurement in the CHEOPS (λeff = 6300 Å) and TESS (λeff = 8000 Å) passbands, we constrained the dayside brightness temperature of WASP-178 b in the 2250-2800 K interval. The geometric albedo 0.1< Ag<0.35 generally supports the picture that giant planets are poorly reflective, while the recirculation efficiency ϵ >0.7 makes WASP-178 b an interesting laboratory for testing the current heat-recirculation models.
  •  
6.
  • Jones, K., et al. (författare)
  • The stable climate of KELT-9b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500 K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 separate occultations obtained by the 30 cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of similar to 0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and recombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1% (1 sigma).
  •  
7.
  • Kiefer, F., et al. (författare)
  • Hint of an exocomet transit in the CHEOPS light curve of HD 172555
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 172555 is a young (∼20 Myr) A7V star surrounded by a 10 au wide debris disk suspected to be replenished partly by collisions between large planetesimals. Small evaporating transiting bodies, that is exocomets, have also been detected in this system by spectroscopy. After β Pictoris, this is another example of a system possibly witnessing a phase of the heavy bombardment of planetesimals. In such a system, small bodies trace dynamical evolution processes. We aim to constrain their dust content by using transit photometry. We performed a 2-day-long photometric monitoring of HD 172555 with the CHEOPS space telescope in order to detect shallow transits of exocomets with a typical expected duration of a few hours. The large oscillations in the light curve indicate that HD 172555 is a δ Scuti pulsating star. After removing those dominating oscillations, we found a hint of a transient absorption. If fitted with an exocomet transit model, it would correspond to an evaporating body passing near the star at a distance of 6.8±1.4R∗ (or 0.05±0.01 au) with a radius of 2.5 km. These properties are comparable to those of the exocomets already found in this system using spectroscopy, as well as those found in the β Pic system. The nuclei of the Solar System's Jupiter family comets, with radii of 2-6 km, are also comparable in size. This is the first piece of evidence of an exocomet photometric transit detection in the young system of HD 172555.
  •  
8.
  • Osborn, H. P., et al. (författare)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
9.
  • Aubert, S, et al. (författare)
  • Global Matrix 4.0 Physical Activity Report Card Grades for Children and Adolescents: Results and Analyses From 57 Countries
  • 2022
  • Ingår i: Journal of physical activity & health. - : Human Kinetics. - 1543-5474 .- 1543-3080. ; 19:11, s. 700-728
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Global Matrix 4.0 on physical activity (PA) for children and adolescents was developed to achieve a comprehensive understanding of the global variation in children’s and adolescents’ (5–17 y) PA, related measures, and key sources of influence. The objectives of this article were (1) to summarize the findings from the Global Matrix 4.0 Report Cards, (2) to compare indicators across countries, and (3) to explore trends related to the Human Development Index and geo-cultural regions. Methods: A total of 57 Report Card teams followed a harmonized process to grade the 10 common PA indicators. An online survey was conducted to collect Report Card Leaders’ top 3 priorities for each PA indicator and their opinions on how the COVID-19 pandemic impacted child and adolescent PA indicators in their country. Results: Overall Physical Activity was the indicator with the lowest global average grade (D), while School and Community and Environment were the indicators with the highest global average grade (C+). An overview of the global situation in terms of surveillance and prevalence is provided for all 10 common PA indicators, followed by priorities and examples to support the development of strategies and policies internationally. Conclusions: The Global Matrix 4.0 represents the largest compilation of children’s and adolescents’ PA indicators to date. While variation in data sources informing the grades across countries was observed, this initiative highlighted low PA levels in children and adolescents globally. Measures to contain the COVID-19 pandemic, local/international conflicts, climate change, and economic change threaten to worsen this situation.
  •  
10.
  • Gao, Hong, et al. (författare)
  • The landscape of tolerated genetic variation in humans and primates
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648
  • Tidskriftsartikel (refereegranskat)abstract
    • Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy