SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rinke A.) srt2:(2020-2023)"

Sökning: WFRF:(Rinke A.) > (2020-2023)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shupe, M. D., et al. (författare)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
2.
  • Wendisch, M., et al. (författare)
  • Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)(3) Project
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 104:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)(3) project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric-ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
  •  
3.
  •  
4.
  • Angelopoulus, M., et al. (författare)
  • Physical properties of sea ice cores from site MCS_FYI measured on legs 1 to 3 of the MOSAiC expedition.
  • 2022
  • Ingår i: PANGAEA.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
  •  
5.
  • Angelopoulus, M., et al. (författare)
  • Physical properties of sea ice cores from site MCS-SYI measured on legs 1 to 3 of the MOSAiC expedition
  • 2022
  • Ingår i: PANGAEA.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
  •  
6.
  • Salganik, E., et al. (författare)
  • Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance
  • 2023
  • Ingår i: Elementa: Science of the Anthropocene. - 2325-1026. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-salinity meltwater from Arctic sea ice and its snow cover accumulates and creates under-ice meltwater layers below sea ice. These meltwater layers can result in the formation of new ice layers, or false bottoms, at the interface of this low-salinity meltwater and colder seawater. As part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), we used a combination of sea ice coring, temperature profiles from thermistor strings and underwater multibeam sonar surveys with a remotely operated vehicle (ROV) to study the areal coverage and temporal evolution of under-ice meltwater layers and false bottoms during the summer melt season from mid-June until late July. ROV surveys indicated that the areal coverage of false bottoms for a part of the MOSAiC Central Observatory (350 by 200 m2) was 21%. Presence of false bottoms reduced bottom ice melt by 7-8% due to the local decrease in the ocean heat flux, which can be described by a thermodynamic model. Under-ice meltwater layer thickness was larger below first-year ice and thinner below thicker second-year ice. We also found that thick ice and ridge keels confined the areas in which under-ice meltwater accumulated, preventing its mixing with underlying seawater. While a thermodynamic model could reproduce false bottom growth and melt, it could not describe the observed bottom melt rates of the ice above false bottoms. We also show that the evolution of under-ice meltwaterlayer salinity below first-year ice is linked to brine flushing from the above sea ice and accumulating in the meltwater layer above the false bottom. The results of this study aid in estimating the contribution of underice meltwater layers and false bottoms to the mass balance and salt budget for Arctic summer sea ice.
  •  
7.
  • Akperov, Mirseid, et al. (författare)
  • Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic cyclones, as a prevalent feature in the coupled dynamics of the Arctic climate system, have large impacts on the atmospheric transport of heat and moisture and deformation and drifting of sea ice. Previous studies based on historical and future simulations with climate models suggest that Arctic cyclogenesis is affected by the Arctic amplification of global warming, for instance, a growing land-sea thermal contrast. We thus hypothesize that biogeophysical feedbacks (BF) over the land, here mainly referring to the albedo-induced warming in spring and evaporative cooling in summer, may have the potential to significantly change cyclone activity in the Arctic. Based on a regional Earth system model (RCA-GUESS) which couples a dynamic vegetation model and a regional atmospheric model and an algorithm of cyclone detection and tracking, this study assesses for the first time the impacts of BF on the characteristics of Arctic cyclones under three IPCC Representative Concentration Pathways scenarios (i.e. RCP2.6, RCP4.5 and RCP8.5). Our analysis focuses on the spring- and summer time periods, since previous studies showed BF are the most pronounced in these seasons. We find that BF induced by changes in surface heat fluxes lead to changes in land-sea thermal contrast and atmospheric stability. This, in turn, noticeably changes the atmospheric baroclinicity and, thus, leads to a change of cyclone activity in the Arctic, in particular to the increase of cyclone frequency over the Arctic Ocean in spring. This study highlights the importance of accounting for BF in the prediction of Arctic cyclones and the role of circulation in the Arctic regional Earth system.
  •  
8.
  • Nesti, Cedric, et al. (författare)
  • Hemicolectomy versus appendectomy for patients with appendiceal neuroendocrine tumours 1-2 cm in size : a retrospective, Europe-wide, pooled cohort study
  • 2023
  • Ingår i: The Lancet Oncology. - : Elsevier. - 1470-2045 .- 1474-5488. ; 24:2, s. 187-194
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAwareness of the potential global overtreatment of patients with appendiceal neuroendocrine tumours (NETs) of 1–2 cm in size by performing oncological resections is increasing, but the rarity of this tumour has impeded clear recommendations to date. We aimed to assess the malignant potential of appendiceal NETs of 1–2 cm in size in patients with or without right-sided hemicolectomy.MethodsIn this retrospective cohort study, we pooled data from 40 hospitals in 15 European countries for patients of any age and Eastern Cooperative Oncology Group performance status with a histopathologically confirmed appendiceal NET of 1–2 cm in size who had a complete resection of the primary tumour between Jan 1, 2000, and Dec 31, 2010. Patients either had an appendectomy only or an appendectomy with oncological right-sided hemicolectomy or ileocecal resection. Predefined primary outcomes were the frequency of distant metastases and tumour-related mortality. Secondary outcomes included the frequency of regional lymph node metastases, the association between regional lymph node metastases and histopathological risk factors, and overall survival with or without right-sided hemicolectomy. Cox proportional hazards regression was used to estimate the relative all-cause mortality hazard associated with right-sided hemicolectomy compared with appendectomy alone. This study is registered with ClinicalTrials.gov, NCT03852693.Findings282 patients with suspected appendiceal tumours were identified, of whom 278 with an appendiceal NET of 1–2 cm in size were included. 163 (59%) had an appendectomy and 115 (41%) had a right-sided hemicolectomy, 110 (40%) were men, 168 (60%) were women, and mean age at initial surgery was 36·0 years (SD 18·2). Median follow-up was 13·0 years (IQR 11·0–15·6). After centralised histopathological review, appendiceal NETs were classified as a possible or probable primary tumour in two (1%) of 278 patients with distant peritoneal metastases and in two (1%) 278 patients with distant metastases in the liver. All metastases were diagnosed synchronously with no tumour-related deaths during follow-up. Regional lymph node metastases were found in 22 (20%) of 112 patients with right-sided hemicolectomy with available data. On the basis of histopathological risk factors, we estimated that 12·8% (95% CI 6·5 –21·1) of patients undergoing appendectomy probably had residual regional lymph node metastases. Overall survival was similar between patients with appendectomy and right-sided hemicolectomy (adjusted hazard ratio 0·88 [95% CI 0·36–2·17]; p=0·71).InterpretationThis study provides evidence that right-sided hemicolectomy is not indicated after complete resection of an appendiceal NET of 1–2 cm in size by appendectomy, that regional lymph node metastases of appendiceal NETs are clinically irrelevant, and that an additional postoperative exclusion of metastases and histopathological evaluation of risk factors is not supported by the presented results. These findings should inform consensus best practice guidelines for this patient cohort.
  •  
9.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
10.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX)
  • 2023
  • Ingår i: Anthropocene. - 2213-3054. ; 44
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020-2049 and 2070-2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.
  •  
11.
  • Angelopoulos, Michael, et al. (författare)
  • Deciphering the Properties of Different Arctic Ice Types During the Growth Phase of MOSAiC: Implications for Future Studies on Gas Pathways
  • 2022
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 10, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The increased fraction of first year ice (FYI) at the expense of old ice (second-year ice (SYI) and multi-year ice (MYI)) likely affects the permeability of the Arctic ice cover. This in turn influences the pathways of gases circulating therein and the exchange at interfaces with the atmosphere and ocean. We present sea ice temperature and salinity time series from different ice types relevant to temporal development of sea ice permeability and brine drainage efficiency from freeze-up in October to the onset of spring warming in May. Our study is based on a dataset collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 and 2020. These physical properties were used to derive sea ice permeability and Rayleigh numbers. The main sites included FYI and SYI. The latter was composed of an upper layer of residual ice that had desalinated but survived the previous summer melt and became SYI. Below this ice a layer of new first-year ice formed. As the layer of new first-year ice has no direct contact with the atmosphere, we call it insulated first-year ice (IFYI). The residual/SYI-layer also contained refrozen melt ponds in some areas. During the freezing season, the residual/SYI-layer was consistently impermeable, acting as barrier for gas exchange between the atmosphere and ocean. While both FYI and SYI temperatures responded similarly to atmospheric warming events, SYI was more resilient to brine volume fraction changes because of its low salinity (< 2). Furthermore, later bottom ice growth during spring warming was observed for SYI in comparison to FYI. The projected increase in the fraction of more permeable FYI in autumn and spring in the coming decades may favor gas exchange at the atmosphere-ice interface when sea ice acts as a source relative to the atmosphere. While the areal extent of old ice is decreasing, so is its thickness at the onset of freeze-up. Our study sets the foundation for studies on gas dynamics within the ice column and the gas exchange at both ice interfaces, i.e. with the atmosphere and the ocean.
  •  
12.
  • Angelopoulos, M., et al. (författare)
  • Physical properties of sea ice cores from site BGC2 measured on legs 1 to 3 of the MOSAiC expedition
  • 2022
  • Ingår i: PANGAEA.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
  •  
13.
  • Breznau, Nate, et al. (författare)
  • Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:44
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores how researchers analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each teams workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
  •  
14.
  • Dombrowski, Nina, et al. (författare)
  • Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life's evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (Candidatus Undinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, likely depend on partner organisms for the acquisition of certain metabolites. Our phylogenomic analyses robustly place Undinarchaeota as an independent lineage between two highly supported 'DPANN' clans. Further, our analyses suggest that DPANN have exchanged core genes with their hosts, adding to the difficulty of placing DPANN in the tree of life. This pattern can be sufficiently dominant to allow identifying known symbiont-host clades based on routes of gene transfer. Together, our work provides insights into the origins and evolution of DPANN and their hosts. The evolutionary relationships within Archaea remain unresolved. Here, the authors used genomic approaches to study the Undinarchaeota, a previously uncharacterized clade of DPANN, shed light on their position in an updated archaeal phylogeny and illuminate the history of archaeal genome evolution.
  •  
15.
  • Golub, Malgorzata, et al. (författare)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
16.
  • Makkonen, Esko, et al. (författare)
  • Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal-organic clusters
  • 2021
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 154:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existing LR-TDDFT implementation in GPAW for small chiral molecules. We then demonstrate the efficiency of our local atomic basis set implementation for a large hybrid nanocluster and discuss the chiroptical properties of the cluster.
  •  
17.
  • Pacione, R., et al. (författare)
  • Ground-based GNSS for climate research: review and perspectives
  • 2021
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In climate research, the role of water vapour can hardly be overestimated. Water vapour is the most important natural greenhouse gas and is responsible for the largest known feedback mechanism for amplifying climate change. It also strongly influences atmospheric dynamics and the hydrologic cycle through surface evaporation, latent heat transport and diabatic heating, and is, in particular, a source of clouds and precipitation. Atmospheric water vapour is highly variable, both in space and in time. Therefore, measuring it remains a demanding and challenging task. The Zenith Total Delay (ZTD) estimated from GNSS observations, provided at a temporal resolution of minutes and under all weather conditions, can be converted to Integrated Water Vapour (IWV), if additional meteorological variables are available. Inconsistencies introduced into long-term time series from improved GNSS processing algorithms, instrumental, and environmental changes at GNSS stations make climate trend analyses challenging. Ongoing re-processing efforts using state-of-the-art models aim at providing consistent time series of tropospheric data, using 24+ years of GNSS observations from global and regional networks. GNSS is reaching the “maturity age” of 30 years when climate normal of ZTD/IWV (and horizontal gradients) can be derived. Being not assimilated in numerical weather prediction model reanalyses, GNSS products can also be used as independent datasets to validate climate model outputs (ZTD/IWV). However, what is the actual use of GNSS ZTDs in climate monitoring? What are the advantages of using GNSS ZTDs for climate monitoring? In addition, what would be the best ZTD time series to serve the climate community? The presentation will provide a review of the progress made in and the status of using GNSS tropospheric datasets for climate research, highlighting the challenges and pitfalls, and outlining the major remaining steps ahead. We will show examples demonstrating the benefits for climate monitoring brought by using GNSS ZTD and/or IWV datasets in complement to other observations. This contribution is related to the activities of JWG C.2: Quality control methods for climate applications of geodetic tropospheric parameters, https://iccc.iag-aig.org/joint-work-groups/216, of the IAG Inter-Commission Committee on "Geodesy for Climate Research" (ICCC).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (12)
annan publikation (3)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Rinke, A. (7)
Simoes Pereira, Patr ... (5)
Abrahamsson, Katarin ... (4)
Dumitrascu, Adela (4)
Stephens, M. (4)
Sachs, T. (4)
visa fler...
Damm, E. (4)
Wang, L (3)
Ulfsbo, Adam, 1985 (3)
Bauch, D. (3)
Marsay, C.M. (3)
Stefels, J. (3)
Verdugo, J. (3)
Zhan, L. (3)
Castellani, G. (3)
Creamean, J. (3)
Divine, D. (3)
Fons, S.W. (3)
Gradinger, R. (3)
Granskog, M.A. (3)
Hoppe, C.J.M. (3)
Hoyland, K.V. (3)
Krumpen, T. (3)
Engelmann, R. (2)
Rex, M. (2)
Wehner, B. (2)
Rusak, James A. (2)
Verburg, Piet (2)
Woolway, R. Iestyn (2)
Adrian, Rita (2)
Crewell, S. (2)
Ren, J (2)
Akperov, Mirseid (2)
Rinke, Annette (2)
Mokhov, Igor I. (2)
Matthes, Heidrun (2)
Semenov, Vladimir A. (2)
Zhang, Wenxin (2)
Dethloff, K. (2)
Lampert, A (2)
Torstensson, A. (2)
Angelopoulus, M. (2)
Bowman, J. (2)
Eggers, L. (2)
Fong, A. (2)
Grosse, J. (2)
Haas, C. (2)
Immerz, A. (2)
Kolabutin, N. (2)
Lei, R. (2)
visa färre...
Lärosäte
Göteborgs universitet (7)
Uppsala universitet (4)
Lunds universitet (3)
Stockholms universitet (2)
Chalmers tekniska högskola (2)
Umeå universitet (1)
visa fler...
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Samhällsvetenskap (2)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy