SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanchez Cano Beatriz) "

Sökning: WFRF:(Sanchez Cano Beatriz)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burne, Sofia, et al. (författare)
  • Space Weather in the Saturn-Titan System
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 948:1
  • Tidskriftsartikel (refereegranskat)abstract
    • New evidence based on Cassini magnetic field and plasma data has revealed that the discovery of Titan outside Saturn's magnetosphere during the T96 flyby on 2013 December 1 was the result of the impact of two consecutive interplanetary coronal mass ejections (ICMEs) that left the Sun in 2013 early November and interacted with the moon and the planet. We study the dynamic evolution of Saturn's magnetopause and bow shock, which evidences a magnetospheric compression from late November 28 to December 4 (at least), under prevailing solar wind dynamic pressures of 0.16-0.3 nPa. During this interval, transient disturbances associated with the two ICMEs are observed, allowing for the identification of their magnetic structures. By analyzing the magnetic field direction, and the pressure balance in Titan's induced magnetosphere, we show that Cassini finds Saturn's moon embedded in the second ICME after being swept by its interplanetary shock and amid a shower of solar energetic particles that may have caused dramatic changes in the moon's lower ionosphere. Analyzing a list of Saturn's bow shock crossings during 2004-2016, we find that the magnetospheric compression needed for Titan to be in the supersonic solar wind can be generally associated with the presence of an ICME or a corotating interaction region. This leads to the conclusion that Titan would rarely face the pristine solar wind, but would rather interact with transient solar structures under extreme space weather conditions.
  •  
2.
  • Holmström, Mats, et al. (författare)
  • Future opportunities in solar system plasma science through ESA's exploration programme
  • 2024
  • Ingår i: npj Microgravity. - : Springer Nature. - 2373-8065. ; 10:1
  • Forskningsöversikt (refereegranskat)abstract
    • The solar wind interacts with all solar system bodies, inducing different types of dynamics depending on their atmospheric and magnetic environments. We here outline some key open scientific questions related to this interaction, with a focus on the Moon and Mars, that may be addressed by future Mars and Moon missions by the European Space Agency's Human and Robotic Exploration programme. We describe possible studies of plasma interactions with bodies with and without an atmosphere, using multi-point and remote measurements, and energetic particle observations, as well as recommend some actions to take.
  •  
3.
  • Lester, Mark, et al. (författare)
  • The Impact of Energetic Particles on the Martian Ionosphere During a Full Solar Cycle of Radar Observations: Radar Blackouts
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first long-term characterization of ionization layers in the lower ionosphere of Mars (below ∼90 km), a region inaccessible to orbital in-situ observations, based on an analysis of radar echo blackouts observed on Mars Express and the Mars Reconnaissance Orbiter from 2006 to 2017. A blackout occurs when the expected surface reflection is partly or totally attenuated for portions of an observation. Enhanced ionization at altitudes of 60–90 km, below the main ionospheric electron density peak, leads to increased absorption of the radar signal, resulting in the blackouts. We find that (a) MARSIS, operating at frequencies between 1.8 and 5 MHz, suffered more blackouts than SHARAD, which has a higher carrier frequency (20 MHz), (b) there is a clear correlation of blackout occurrence with solar cycle, (c) there is no apparent relationship between blackout occurrence and crustal magnetic fields, and (d) blackouts occur during both nightside and dayside observations, although the peak occurrence is deep on the nightside. Analysis of Mars Atmosphere and Volatile EvolutioN Solar Energetic Particle electron counts between 20 and 200 keV demonstrates that these electrons are likely responsible for attenuating the radar signals. We investigate the minimum SEP electron fluxes required to ionize the lower atmosphere and produce measurable attenuation. When both radars experience a blackout, the SEP electron fluxes are at their highest. Based on several case studies, we find that the average SEP spectrum responsible for a blackout is particularly enhanced at its higher energy end, that is, above 70 keV.
  •  
4.
  • Lillis, Robert J., et al. (författare)
  • MOSAIC: A satellite constellation to enable groundbreaking mars climate system science and prepare for human exploration
  • 2021
  • Ingår i: Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian climate system has been revealed to rival the complexity of Earth's. Over the last 20 yr, a fragmented and incomplete picture has emerged of its structure and variability; we remain largely ignorant of many of the physical processes driving matter and energy flow between and within Mars' diverse climate domains. Mars Orbiters for Surface, Atmosphere, and Ionosphere Connections (MOSAIC) is a constellation of ten platforms focused on understanding these climate connections, with orbits and instruments tailored to observe the Martian climate system from three complementary perspectives. First, low-circular near-polar Sun-synchronous orbits (a large mothership and three smallsats spaced in local time) enable vertical profiling of wind, aerosols, water, and temperature, as well as mapping of surface and subsurface ice. Second, elliptical orbits sampling all of Mars' plasma regions enable multipoint measurements necessary to understand mass/energy transport and ion-driven escape, also enabling, with the polar orbiters, dense radio occultation coverage. Last, longitudinally spaced areostationary orbits enable synoptic views of the lower atmosphere necessary to understand global and mesoscale dynamics, global views of the hydrogen and oxygen exospheres, and upstream measurements of space weather conditions. MOSAIC will characterize climate system variability diurnally and seasonally, on meso-, regional, and global scales, targeting the shallow subsurface all the way out to the solar wind, making many first-of-their-kind measurements. Importantly, these measurements will also prepare for human exploration and habitation of Mars by providing water resource prospecting, operational forecasting of dust and radiation hazards, and ionospheric communication/positioning disruptions.
  •  
5.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
6.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
7.
  • Ntaios, George, et al. (författare)
  • A tool to identify patients with embolic stroke of undetermined source at high recurrence risk.
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:23
  • Tidskriftsartikel (refereegranskat)abstract
    • A tool to stratify the risk of stroke recurrence in patients with embolic stroke of undetermined source (ESUS) could be useful in research and clinical practice. We aimed to determine whether a score can be developed and externally validated for the identification of patients with ESUS at high risk for stroke recurrence.We pooled the data of all consecutive patients with ESUS from 11 prospective stroke registries. We performed multivariable Cox regression analysis to identify predictors of stroke recurrence. Based on the coefficient of each covariate of the fitted multivariable model, we generated an integer-based point scoring system. We validated the score externally assessing its discrimination and calibration.In 3 registries (884 patients) that were used as the derivation cohort, age, leukoaraiosis, and multiterritorial infarct were identified as independent predictors of stroke recurrence and were included in the final score, which assigns 1 point per every decade after 35 years of age, 2 points for leukoaraiosis, and 3 points for multiterritorial infarcts (acute or old nonlacunar). The rate of stroke recurrence was 2.1 per 100 patient-years (95% confidence interval [CI] 1.44-3.06) in patients with a score of 0-4 (low risk), 3.74 (95% CI 2.77-5.04) in patients with a score of 5-6 (intermediate risk), and 8.23 (95% CI 5.99-11.3) in patients with a score of 7-12 (high risk). Compared to low-risk patients, the risk of stroke recurrence was significantly higher in intermediate-risk (hazard ratio [HR] 1.78, 95% CI 1.1-2.88) and high-risk patients (HR 4.67, 95% CI 2.83-7.7). The score was well-calibrated in both derivation and external validation cohorts (8 registries, 820 patients) (Hosmer-Lemeshow test χ2: 12.1 [p = 0.357] and χ2: 21.7 [p = 0.753], respectively). The area under the curve of the score was 0.63 (95% CI 0.58-0.68) and 0.60 (95% CI 0.54-0.66), respectively.The proposed score can assist in the identification of patients with ESUS at high risk for stroke recurrence.
  •  
8.
  • Palmerio, Erika, et al. (författare)
  • CMEs and SEPs During November-December 2020 : A Challenge for Real-Time Space Weather Forecasting
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this work, we aim to analyze the whole inner heliospheric context between two eruptive flares that took place in late 2020, that is, the M4.4 flare of 29 November and the C7.4 flare of 7 December. This period is especially interesting because the STEREO-A spacecraft was located similar to 60 degrees east of the Sun-Earth line, giving us the opportunity to test the capabilities of "predictions at 360 degrees" using remote-sensing observations from the Lagrange L1 and L5 points as input. We simulate the CMEs that were ejected during our period of interest and the SEPs accelerated by their shocks using the WSA-Enlil-SEPMOD modeling chain and four sets of input parameters, forming a "mini-ensemble." We validate our results using in situ observations at six locations, including Earth and Mars. We find that, despite some limitations arising from the models' architecture and assumptions, CMEs and shock-accelerated SEPs can be reasonably studied and forecast in real time at least out to several tens of degrees away from the eruption site using the prediction tools employed here.
  •  
9.
  • Sanchez-Cano, Beatriz, et al. (författare)
  • Mars' Ionospheric Interaction With Comet C/2013 A1 Siding Spring's Coma at Their Closest Approach as Seen by Mars Express
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:1
  • Tidskriftsartikel (refereegranskat)abstract
    • On 19 October 2014, Mars experienced a close encounter with Comet C/2013 A1 Siding Spring. Using data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board Mars Express (MEX), we assess the interaction of the Martian ionosphere with the comet's coma and possibly magnetic tail during the orbit of their closest approach. The topside ionospheric electron density profile is evaluated from the altitude of the peak density of the ionosphere up to the MEX altitude. We find complex and rapid variability in the ionospheric profile along the MEX orbit, not seen even after the impact of a large coronal mass ejection. Before closest approach, large electron density reductions predominate, which could be caused either by comet water damping or comet magnetic field interactions. After closest approach, a substantial electron density rise predominates. Moreover, several extra topside layers are visible along the whole orbit at different altitudes, which could be related to different processes as we discuss.
  •  
10.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Mars’ plasma system. Scientific potential of coordinated multipoint missions : "The next generation"
  • 2022
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 54, s. 641-676
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.
  •  
11.
  • Sanchez-Cano, Beatriz, et al. (författare)
  • Origin of the Extended Mars Radar Blackout of September 2017
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:6, s. 4556-4568
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express, which operates between 0.1 and 5.5 MHz, suffered from a complete blackout for 10 days in September 2017 when observing on the nightside (a rare occurrence). Moreover, the Shallow Radar (SHARAD) onboard the Mars Reconnaissance Orbiter, which operates at 20 MHz, also suffered a blackout for three days when operating on both dayside and nightside. We propose that these blackouts are caused by solar energetic particles of few tens of keV and above associated with an extreme space weather event between 10 and 22 September 2017, as recorded by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Numerical simulations of energetic electron precipitation predict that a lower O-2(+) nighttime ionospheric layer of magnitude similar to 10(10) m(-3) peaking at similar to 90-km altitude is produced. Consequently, such a layer would absorb radar signals at high frequencies and explain the blackouts. The peak absorption level is found to be at 70-km altitude. Plain Language Summary Several instrument operations, as well as communication systems with rovers at the surface, depend on radio signals that propagate throughout the atmosphere of Mars. This is the case also for two radars that are currently working in Mars' orbit, sounding the ionosphere, surface, and subsurface of the planet. In mid-September 2017, a powerful solar storm hit Mars, producing a large amount of energetic particle precipitation over a 10-day period. We have found that high-energy electrons ionized the atmosphere of Mars, creating a dense layer of ions and electrons at similar to 90 km on the Martian nightside. This layer attenuated radar signals continuously for 10 days, stopping the radars to receive any signal from the planetary surface. In this work, we assess the properties of this layer in order to understand the implications of this kind of phenomenon for radar performance and communications.
  •  
12.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the growing importance of planetary Space Weather forecasting and radiation protection for science and robotic exploration and the need for accurate Space Weather monitoring and predictions, only a limited number of spacecraft have dedicated instrumentation for this purpose. However, every spacecraft (planetary or astronomical) has hundreds of housekeeping sensors distributed across the spacecraft, some of which can be useful to detect radiation hazards produced by solar particle events. In particular, energetic particles that impact detectors and subsystems on a spacecraft can be identified by certain housekeeping sensors, such as the Error Detection and Correction (EDAC) memory counters, and their effects can be assessed. These counters typically have a sudden large increase in a short time in their error counts that generally match the arrival of energetic particles to the spacecraft. We investigate these engineering datasets for scientific purposes and perform a feasibility study of solar energetic particle event detections using EDAC counters from seven European Space Agency Solar System missions: Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia. Six cases studies, in which the same event was observed by different missions at different locations in the inner Solar System are analyzed. The results of this study show how engineering sensors, for example, EDAC counters, can be used to infer information about the solar particle environment at each spacecraft location. Therefore, we demonstrate the potential of the various EDAC to provide a network of solar particle detections at locations where no scientific observations of this kind are available.
  •  
13.
  • Stergiopoulou, Katerina, et al. (författare)
  • A Two-Spacecraft Study of Mars' Induced Magnetosphere's Response to Upstream Conditions
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a two-spacecraft study, in which we investigate the effects of the upstream solar wind conditions on the Martian induced magnetosphere and upper ionosphere. We use Mars Express (MEX) magnetic field magnitude data together with interplanetary magnetic field (IMF), solar wind density, and velocity measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, from November 2014 to November 2018. We compare simultaneous observations of the magnetic field magnitude in the induced magnetosphere of Mars (|B|(IM)) with the IMF magnitude (|B|(IMF)), and we examine variations in the ratio |B|(IM)/|B|(IMF) with solar wind dynamic pressure, speed and density. We find that the |B|(IM)/|B|(IMF) ratio in the induced magnetosphere generally decreases with increased dynamic pressure and that a more structured interaction is seen when comparing induced fields to the instantaneous IMF, where reductions in the relative fields at the magnetic pile up boundary (MPB) are more evident than in the field strength itself, along with enhancements in the immediate vicinity of the optical shadow of Mars. We interpret these results as evidence that while the induced magnetosphere is indeed compressed and induced field strengths are higher during periods of high dynamic pressure, a relatively larger amount of magnetic flux threads the region compared to that available from the unperturbed IMF during low dynamic pressure intervals.
  •  
14.
  • Telloni, Daniele, et al. (författare)
  • Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe-Metis/Solar Orbiter Observations
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 935:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R (circle dot) above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local properties of the two streams are different. Specifically, the solar wind emanating from the stronger magnetic field region has a lower bulk flux density, as expected, and is in a state of well-developed Alfvenic turbulence, with low intermittency. This is interpreted in terms of slab turbulence in the context of nearly incompressible magnetohydrodynamics. Conversely, the highly intermittent and poorly developed turbulent behavior of the solar wind from the weaker magnetic field region is presumably due to large magnetic deflections most likely attributed to the presence of switchbacks of interchange reconnection origin.
  •  
15.
  • Telloni, Daniele, et al. (författare)
  • Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury's orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
Författare/redaktör
Ärnlöv, Johan, 1970- (2)
Hankey, Graeme J. (2)
Wijeratne, Tissa (2)
Sahebkar, Amirhossei ... (2)
Hassankhani, Hadi (2)
Bassat, Quique (2)
visa fler...
Madotto, Fabiana (2)
Koyanagi, Ai (2)
Castro, Franz (2)
Aboyans, Victor (2)
Koul, Parvaiz A. (2)
Edvardsson, David (2)
Cooper, Cyrus (2)
Weiderpass, Elisabet ... (2)
Dhimal, Meghnath (2)
Vaduganathan, Muthia ... (2)
Sheikh, Aziz (2)
Adhikari, Tara Balla ... (2)
Acharya, Pawan (2)
Gething, Peter W. (2)
Hay, Simon I. (2)
Tripathy, Srikanth P ... (2)
Afshin, Ashkan (2)
Cornaby, Leslie (2)
Abebe, Zegeye (2)
Afarideh, Mohsen (2)
Agrawal, Sutapa (2)
Alahdab, Fares (2)
Badali, Hamid (2)
Badawi, Alaa (2)
Bensenor, Isabela M. (2)
Bernabe, Eduardo (2)
Dandona, Lalit (2)
Dandona, Rakhi (2)
Degefa, Meaza Girma (2)
Esteghamati, Alireza (2)
Esteghamati, Sadaf (2)
Farvid, Maryam S. (2)
Farzadfar, Farshad (2)
Feigin, Valery L. (2)
Flor, Luisa Sorio (2)
Geleijnse, Johanna M ... (2)
Grosso, Giuseppe (2)
Hamidi, Samer (2)
Hassen, Hamid Yimam (2)
James, Spencer L. (2)
Jonas, Jost B. (2)
Kasaeian, Amir (2)
Khader, Yousef Saleh (2)
Khalil, Ibrahim A. (2)
visa färre...
Lärosäte
Umeå universitet (9)
Uppsala universitet (9)
Chalmers tekniska högskola (2)
Karolinska Institutet (2)
Högskolan Dalarna (2)
Göteborgs universitet (1)
visa fler...
Lunds universitet (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (3)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy