SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sellberg G) srt2:(2010-2014)"

Sökning: WFRF:(Sellberg G) > (2010-2014)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sellberg, Jonas A., et al. (författare)
  • Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 510:7505, s. 381-
  • Tidskriftsartikel (refereegranskat)abstract
    • Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories(4-12) that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (T-H) at approximately 232 kelvin(13) and above about 160 kelvin(14), and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin(2,15). Water crystallization has been inhibited by using nanoconfinement(16), nanodroplets(17) and association with biomolecules(16) to give liquid samples at temperatures below T-H, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear(18). Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled(19-21) below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.
  •  
2.
  • Schreck, Simon, et al. (författare)
  • Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 113:15, s. 153002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.
  •  
3.
  • Alonso-Mori, Roberto, et al. (författare)
  • Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:47, s. 19103-19107
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this probe-before-destroy approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K beta(1,3) XES spectra of Mn-II and Mn-2(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to > 100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
  •  
4.
  • Beye, M., et al. (författare)
  • Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001)
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.
  •  
5.
  • Dell'Angela, M., et al. (författare)
  • Real-Time Observation of Surface Bond Breaking with an X-ray Laser
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6125, s. 1302-1305
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.
  •  
6.
  • Hattne, Johan, et al. (författare)
  • Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
  • 2014
  • Ingår i: Nature Methods. - 1548-7091 .- 1548-7105. ; 11:5, s. 545-548
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
  •  
7.
  • Hattne, Johan, et al. (författare)
  • Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers
  • 2014
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 11:5, s. 545-548
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
  •  
8.
  • Huang, Congcong, et al. (författare)
  • Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water
  • 2011
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 13:44, s. 19997-20007
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed wide-angle X-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 degrees C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows for a reliable Fourier transform of the experimental data resolving shell structure out to similar to 12 angstrom, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 angstrom although less agreement is seen for the first peak in the intermolecular pair-correlation function (PCF). The Shiratani-Sasai Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the O-O PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.
  •  
9.
  • Kern, Jan, et al. (författare)
  • Room temperature femtosecond X-ray diffraction of photosystem II microcrystals
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:25, s. 9721-9726
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This lightdriven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (<50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the probe before destroy approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.
  •  
10.
  • Kern, Jan, et al. (författare)
  • Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 340:6131, s. 491-495
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S-1) and the first illuminated state (S-2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
  •  
11.
  • Sellberg, Jonas A., et al. (författare)
  • Comparison of x-ray absorption spectra between water and ice : New ice data with low pre-edge absorption cross-section
  • 2014
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 141:3, s. 034507-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.
  •  
12.
  • Sellberg, Jonas A., 1985- (författare)
  • X-ray scattering and spectroscopy of supercooled water and ice
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents experimental studies of water and ice at near-atmospheric pressures using intense x-rays only accessible at synchrotrons and free-electron lasers. In particular, it focuses on the deeply supercooled, metastable state and its implications on ice nucleation.The local structure of the liquid phase was studied by x-ray scattering over a wide temperature range extending from 339 K down to 227 K. In order to be able to study the deeply supercooled liquid, micron-sized water droplets were evaporatively cooled in vacuum and probed by ultrashort x-ray pulses. This is to date the lowest temperature at which measurements of the structure have been performed on bulk liquid water cooled from room temperature. Upon deep supercooling, the structure evolved toward that of a low-density liquid with local tetrahedral coordination. At ~230 K, where the low-density liquid structure started to dominate, the number of droplets containing ice nuclei increased rapidly. The estimated nucleation rate suggests that there is a “fragile-to-strong” transition in the dynamics of the liquid below 230 K, and its implications on water structure are discussed.Similarly, the electronic structure of deeply supercooled water was studied by x-ray emission spectroscopy down to 222 K, but the spectral changes expected from the structural transformation remained absent and explanations are discussed. At high fluence, the non-linear dependence of the x-ray emission yield indicated that there were high valence hole densities created during the x-ray pulse length due to Auger cascades, resulting in reabsorption of the x-ray emission.Finally, the hydrogen-bonded network in water was studied by x-ray absorption spectroscopy and compared to various ices. It was found that the pre-edge absorption cross-section, which is associated with distorted hydrogen bonds, could be minimized for crystalline ice grown on a hydrophobic BaF2(111) surface with low concentration of nucleation centers.
  •  
13.
  • Sierra, Raymond G., et al. (författare)
  • Nanoflow electrospinning serial femtosecond crystallography
  • 2012
  • Ingår i: Acta Crystallographica Section D. - : Wiley-Blackwell. - 0907-4449 .- 1399-0047. ; 68, s. 1584-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 mu l min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 mu l min(-1) and diffracted to beyond 4 angstrom resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 mu g of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy