SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shah Faiz Ullah 1981 ) srt2:(2022)"

Sökning: WFRF:(Shah Faiz Ullah 1981 ) > (2022)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mushtaq, Irrum, et al. (författare)
  • Ferrocene-Based Terpolyamides and Their PDMS-Containing Block Copolymers: Synthesis and Physical Properties
  • 2022
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 14:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic polyamides are well-known as high-performance materials due to their outstanding properties making them useful in a wide range of applications. However, their limited solubility in common organic solvents restricts their processability and becomes a hurdle in their applicability. This study is focused on the synthesis of processable ferrocene-based terpolyamides and their polydimethylsiloxane (PDMS)-containing block copolymers, using low-temperature solution polycondensation methodology. All the synthesized materials were structurally characterized using FTIR and 1H NMR spectroscopic techniques. The ferrocene-based terpolymers and block copolymers were soluble in common organic solvents, while the organic analogs were found only soluble in sulfuric acid. WXRD analysis showed the amorphous nature of the materials, while the SEM analysis exposed the modified surface of the ferrocene-based block copolymers. The structure–property relationship of the materials was further elucidated by their water absorption and thermal behavior. These materials showed low to no water absorption along with their high limiting oxygen index (LOI) values depicting their good flame-retardant behavior. DFT studies also supported the role of various monomers in the polycondensation reaction where the electron pair donation from HOMO of diamine monomer to the LUMO of acyl chloride was predicted, along with the calculation of various other parameters of the representative terpolymers and block copolymers.
  •  
2.
  • An, Rong, et al. (författare)
  • Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; :14, s. 11098-11128
  • Forskningsöversikt (refereegranskat)abstract
    • Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure–property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL–solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL–solid interfaces, and the combination of experiments and simulations are argued.
  •  
3.
  • An, Rong, et al. (författare)
  • Ionic liquids on uncharged and charged surfaces: In situ microstructures and nanofriction
  • 2022
  • Ingår i: Friction. - : Springer. - 2223-7690 .- 2223-7704. ; 10:11, s. 1893-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ changes in the nanofriction and microstructures of ionic liquids (ILs) on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy (AFM) and molecular dynamic (MD) simulations. Two representative ILs, [BMIM][BF4] (BB) and [BMIM][PF6] (BP), containing a common cation, were selected for this study. The torsional resonance frequency was captured simultaneously when the nanoscale friction force was measured at a specified normal load; and it was regarded as a measure of the contact stiffness, reflecting in situ changes in the IL microstructures. A higher nanoscale friction force was observed on uncharged mica and highly oriented pyrolytic graphite (HOPG) surfaces when the normal load increased; additionally, a higher torsional resonance frequency was detected, revealing a higher contact stiffness and a more ordered IL layer. The nanofriction of ILs increased at charged HOPG surfaces as the bias voltage varied from 0 to 8 V or from 0 to —8 V. The simultaneously recorded torsional resonance frequency in the ILs increased with the positive or negative bias voltage, implying a stiffer IL layer and possibly more ordered ILs under these conditions. MD simulation reveals that the [BMIM]+ imidazolium ring lies parallel to the uncharged surfaces preferentially, resulting in a compact and ordered IL layer. This parallel “sleeping” structure is more pronounced with the surface charging of either sign, indicating more ordered ILs, thereby substantiating the AFM-detected stiffer IL layering on the charged surfaces. Our in situ observations of the changes in nanofriction and microstructures near the uncharged and charged surfaces may facilitate the development of IL-based applications, such as lubrication and electrochemical energy storage devices, including supercapacitors and batteries.
  •  
4.
  • Bhowmick, Sourav, et al. (författare)
  • Physical and electrochemical properties of new structurally flexible imidazolium phosphate ionic liquids
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:38, s. 23289-23300
  • Tidskriftsartikel (refereegranskat)abstract
    • New structurally flexible 1-methyl- and 1,2-dimethyl-imidazolium phosphate ionic liquids (ILs) bearing oligoethers have been synthesized and thoroughly characterized. These novel ILs revealed high thermal stabilities, low glass transitions, high conductivity and wide electrochemical stability windows up to 6 V. Both anions and cations of 1-methyl-imidazolium ILs diffuse faster than the ions of 1,2-dimethyl-imidazolium ILs, as determined by pulsed field gradient nuclear magnetic resonance (PFG-NMR). The 1-methyl-imidazolium phosphate ILs showed relatively higher ionic conductivities and ion diffusivity as compare with the 1,2-dimethyl-imidazolium phosphate ILs. As expected, the diffusivity of all the anions and cations increases with an increase in the temperature. The 1-methyl-imidazolium phosphate ILs formed hydrogen bonding with the phosphate anions, the strength of which is decreased with increasing temperature, as confirmed by variable temperature 1H and 31P NMR spectroscopy. One of the representative IL, [EmDMIm][DEEP], presented a promising performance at elevated temperatures as an electrolyte in a supercapacitor composed of multiwall carbon nanotubes and activated charcoal (MWCNTs/AC) composite electrodes.
  •  
5.
  • Dong, Yihui, et al. (författare)
  • Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome c on TiO2 Nanotube Arrays
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:23, s. 27456-27465
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-enhanced Raman scattering (SERS) is an attractive technique for studying trace detection. It is of utmost importance to further improve the performance and understand the underlying mechanisms. An ionic liquid (IL), the anion of which is derived from biomass, [P6,6,6,14][FuA] was synthesized and used as a trace additive to improve the SERS performance of cytochrome c (Cyt c) on TiO2 nanotube arrays (TNAs). An increased and better enhancement factor (EF) by four to five times as compared to the system without an IL was obtained, which is better than that from using the choline-based amino acid IL previously reported by us. Dissociation of the ILs improved the ionic conductivity of the system, and the long hydrophobic tails of the [P6,6,6,14]+ cation contributed to a strong electrostatic interaction between Cyt c and the TNA surface, thereby enhancing the SERS performance. Atomic force microscopy did verify strong electrostatic interactions between the Cyt c molecules and TNAs after the addition of the IL. This work demonstrates the importance of introducing the phosphonium-based IL to enhance the SERS performance, which will stimulate further development of more effective ILs on SERS detection and other relevant applications in biology.
  •  
6.
  • Gnezdilov, Oleg I., et al. (författare)
  • Translational and reorientational dynamics of ionic liquid-based fluorine-free lithium-ion battery electrolytes
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier. - 0167-7322 .- 1873-3166. ; 345
  • Tidskriftsartikel (refereegranskat)abstract
    • The translational as well as reorientational mobilities of fluorine-free electrolytes prepared by mixing lithium furan-2-carboxylate Li(FuA) salt with tetra(n-butyl)phosphonium furan-2-carboxylate (P4444)(FuA) ionic liquid are thoroughly investigated. The diffusivity of ions and T1 relaxation of protons belonging to various chemical groups of (P4444)+ and (FuA)− ions and the Li+ ion present in these electrolytes are measured as a function of lithium salt concentration and temperature. The temperature dependence of correlation time for reorientational mobility of various chemical groups of (P4444)+ and (FuA)− ions and the Li+ ion are estimated and used in calculations temperature dependence of the corresponding reorientational rates. It is shown that an increase in the concentration of lithium salt leads to a decrease in both the diffusion coefficients and the reorientation rates for all the chemical groups in concerted way. Activation energy of the reorientational rates for different chemical groups of the organic ions and the Li+ are discussed in details.
  •  
7.
  • Khan, Inayat Ali, et al. (författare)
  • Effect of structural variation in biomass-derived nonfluorinated ionic liquids electrolytes on the performance of supercapacitors
  • 2022
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 69, s. 174-184
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing interest in sustainable and high performance supercapacitors (SCs) operating at elevated temperatures as they are highly demanded in heat-durable electronics. Here, we present a biomass-derived nonfluorinated ionic liquid (IL) [P4444][HFuA] and its structural analogue [P4444][TpA] as electrolytes for supercapacitors comprising multiwall carbon nanotubes and activated charcoal (MWCNTs/AC) mixed carbon composite electrodes. A detailed investigation of the effect of scan rate, temperature, potential window and orientation of ions on the electrodes surfaces is performed. The supercapacitors exhibited relatively lower specific capacitance for both [P4444][HFuA] and [P4444][TpA] ILs at room temperature. However, the specific capacitance has significantly increased with an increase in temperature and potential window. The equivalent serie resistances of the SCs is deceased with increasing temperatures, which is a result of improved ionic conductivities of the IL electrolytes. In CV cycling at 60 °C, the capacitor with [P4444][HFuA] IL-based electrolyte retained about 90% of its initial capacitance, while the capacitor with [P4444][TpA] IL-based electrolyte retained about 83% of its initial capacitance. Atomistic computations revealed that the aromatic [FuA]− and [TpA]− anions displayed perpendicular distribution that can effectively neutralize charges on the carbon surfaces. However, the [HFuA]− anion exhibited somewhat tilted configurations on the carbon electrode surfaces, contributing to their outstanding capacitive performance in electrochemical devices.
  •  
8.
  • Loseva, Olga V., et al. (författare)
  • Two structural types of dithiocarbamato-chlorido complexes of mercury(II): Preparation, supramolecular self-assembly, solid-state 13C and 15N NMR characterisation and thermal behaviour of pseudo-polymeric compounds of [Hg2(S2CNBu2)2Cl2] and [Hg4(S2CNiBu2)6][Hg2Cl6]
  • 2022
  • Ingår i: Inorganica Chimica Acta. - : Elsevier. - 0020-1693 .- 1873-3255. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new crystalline dithiocarbamato-chlorido complexes of mercury(II), [Hg2{S2CN(C4H9)2}2Cl2] (1) and [Hg4{S2CN(iso-C4H9)2}6][Hg2Cl6] (2), have been prepared and chemically identified by solution (1H, 13C) NMR and solid-state (13C, 15N) CP-MAS NMR and FT-IR spectroscopy. The crystal, molecular and supramolecular structures of these compounds were established using single-crystal X-ray diffraction (XRD) analysis. The obtained complexes reveal two principally different types of structural organisation. In the structure of the former neutral complex, there are two isomeric doubly-bridged binuclear molecules [Hg2(S2CNBu2)2Cl2] (‘A’ and ‘B’), whereas the latter compound comprises two ionic structural moieties: the tetranuclear cation [Hg4(S2CNiBu2)6]2+ and the binuclear anion [Hg2Cl6]2−. In both ionic units, pairs of iBu2Dtc or chloride ligands, which perform a bridging structural function, combine with neighbouring mercury atoms. In turn, intermolecular/interionic secondary interactions Hg···S/Hg···Cl are involved in the formation of supramolecular structures of complexes 1/2, yielding pseudo-polymeric chains of (···‘A’···‘B’···)n/(···[Hg4(S2CNiBu2)6]···[Hg2Cl6]···)n, which exhibit alternation of isomeric molecules of 1/ionic moieties of 2 along their lengths. Despite the significant structural difference between the above complexes, we established, using simultaneous thermal analysis (STA), that both exhibit very similar thermal behaviour. Moreover, during the thermal transformations of both compounds 1 and 2, the same two substances are generated: HgCl2 and HgS.
  •  
9.
  • Qiu, Xiuhua, et al. (författare)
  • Probing the nanofriction of non-halogenated phosphonium-based ionic liquid additives in glycol ether oil on titanium surface
  • 2022
  • Ingår i: Friction. - : Springer. - 2223-7690 .- 2223-7704. ; 10:2, s. 268-281
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanofrictional behavior of non-halogentated phosphonium-based ionic liquids (ILs) mixed with diethylene glycol dibutyl ether in the molar ratios of 1:10 and 1:70 was investigated on the titanium (Ti) substrate using atomic force microscopy (AFM). A significant reduction is observed in the friction coefficient μ for the IL-oil mixtures with a higher IL concentration (1:10, μ ∼ 0.05), compared to that for the lower concentration 1:70 (μ ∼ 0.1). AFM approaching force-distance curves and number density profiles for IL-oil mixtures with a higher concentration revealed that the IL preferred to accumulate at the surface forming IL-rich layered structures. The ordered IL-rich layers formed on the titanium surface facilitated the reduction of the nanoscale friction by preventing direct surface-to-surface contact. However, the ordered IL layers disappeared in the case of lower concentration, resulting in an incomplete boundary layers, because the ions were displaced by molecules of the oil during sliding and revealed to be less efficient in friction reduction.
  •  
10.
  • Wang, Tiantian, et al. (författare)
  • Microstructural probing of phosphonium-based ionic liquids on a gold electrode using colloid probe AFM
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:41, s. 25411-25419
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic force microscopy (AFM) with a gold colloid probe modeled as the electrode surface is employed to directly capture the contact resonance frequency of two phosphonium-based ionic liquids (ILs) containing a common anion [BScB]− and differently lengthened cations ([P6,6,6,14]+ and [P4,4,4,8]+). The comparative interfacial studies are performed by creating IL films on the surface of gold, followed by measuring the wettability, thickness of the films, adhesion forces, surface morphology and AFM-probed contact resonance frequency. In addition, the cyclic voltammetry and impedance spectroscopy measurements of the neat ILs are measured on the surface of the gold electrode. The IL with longer cation alkyl chains exhibits a well-defined thin film on the electrode surface and enhanced the capacitance than the shorter chain IL. The AFM contact resonance frequency and force curves reveal that the longer IL prefers to form stiffer ion layers at the gold electrode surface, suggesting the “…anion–anion–cation–cation…” bilayer structure, in contrast, the shorter-chain IL forms the softer cation–anion alternating structure, i.e., “…anion–cation–anion–cation…”.
  •  
11.
  • Wei, Yudi, et al. (författare)
  • Detailing molecular interactions of ionic liquids with charged SiO2 surfaces: A systematic AFM study
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier. - 0167-7322 .- 1873-3166. ; 350
  • Tidskriftsartikel (refereegranskat)abstract
    • It is crucial to understand the behaviour and interfacial interactions as well as properties of ionic liquids (ILs) at electrode surfaces on the molecular level for developing IL-based electrochemical energy storage devices including supercapacitors and batteries. In this work, a colloid probe atomic force microscopy (CP-AFM) -based experimental approach is presented to determine the molecular interaction forces between ILs and differently charged SiO2 microspheres. The effects of structural variations in ILs and the nature surface charges of SiO2 on the molecular interaction force are systematically studied. The surface charges of SiO2 were achieved by grafting quaternary ammonium and –COOH, –NH2 groups. The determined molecular interaction force is found to be strongly dependent on the surface charge, in which, the force enhances at a more negatively charged surface. Furthermore, the ILs with longer alkyl chains on cations exhibit stronger molecular interaction forces with the charged SiO2. These reported experimental results on the molecular level provide new insights for model development and molecular simulations of ILs interacting with charged surfaces and guide the design of ILs-based supercapacitor and battery systems.
  •  
12.
  • Wei, Yudi, et al. (författare)
  • Molecular interactions of ionic liquids with SiO2 surfaces determined from colloid probe atomic force microscopy
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:21, s. 12808-12815
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy