SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smith Jordan J.) srt2:(2010-2014)"

Sökning: WFRF:(Smith Jordan J.) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
2.
  • Fretwell, P., et al. (författare)
  • Bedmap2 : improved ice bed, surface and thickness datasets for Antarctica
  • 2013
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 7:1, s. 375-393
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 degrees S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km(3)) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
  •  
3.
  • Distler, J. H. W., et al. (författare)
  • Is there a role for TNF-alpha antagonists in the treatment of SSc? EUSTAR expert consensus development using the Delphi technique
  • 2011
  • Ingår i: Clinical and Experimental Rheumatology. - 1593-098X. ; 29:2, s. 40-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To obtain experiences and expert opinion on treatment of SSc patients with TNF-alpha antagonists. Methods: An investigation was carried out among the EUSTAR centres into their expertise on use of TNF-alpha antagonists. Assessment forms on the frequency of TNF-alpha inhibitor use were distributed to EULAR Scleroderma Trials and Research Group (EUSTAR) centres. Afterwards, a three round Delphi exercise was performed to obtain expert consensus on the use of TNF-alpha inhibitors in SSc. Results: Seventy-nine centres returned information on use of TNF-alpha antagonists in SSc patients. A total of 65 patients were treated with TNF-alpha inhibitors in 14 different centres. Forty-eight of the 65 patients treated with TNF-alpha inhibitors improved. Improvement was mainly seen in patients with arthritis, whereas the effects on fibrosis varied. In the first round of the subsequent Delphi approach, 71 out of 79 experts stated that they would use TNF-alpha antagonists in SSc. Arthritis was suggested as an indication for TNF alpha antagonists by 75% of the experts. However; after the third stage of the Delphi exercise, the acceptance for the off-label use of TNF-alpha antagonists decreased and 59% recommended that TNF-alpha antagonists should not be used or only used in clinical trials in SSc patients, while 38% of the experts suggested the use of TNF-alpha antagonists for arthritis associated with SSc. Conclusions: Most of the experts do not recommend the routine use of TNF-alpha antagonists in systemic sclerosis. Arthritis might be a potential indication in SSc, although controlled clinical trials with TNF-alpha antagonists are needed before general recommendations can be given.
  •  
4.
  • Evans, Alistair R., et al. (författare)
  • The maximum rate of mammal evolution
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:11, s. 4187-4190
  • Tidskriftsartikel (refereegranskat)abstract
    • How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
  •  
5.
  • Smith, Felisa A, et al. (författare)
  • The evolution of maximum body size of terrestrial mammals
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 330:6008, s. 1216-1219
  • Tidskriftsartikel (refereegranskat)abstract
    • The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy