SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stamp L. K.) srt2:(2010-2014)"

Sökning: WFRF:(Stamp L. K.) > (2010-2014)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
2.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
3.
  • Lerche, E., et al. (författare)
  • Optimizing ion-cyclotron resonance frequency heating for ITER : dedicated JET experiments
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 53:12, s. 124019-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.
  •  
4.
  •  
5.
  • Lerche, E., et al. (författare)
  • Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074008-
  • Tidskriftsartikel (refereegranskat)abstract
    • Two ion cyclotron range of frequencies ( ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas-fundamental H majority and second harmonic He-3 ICRF heating-were recently investigated in JET. Although the same magnetic field and RF frequencies (f approximate to 42 MHz and f approximate to 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in He-4 plasmas, modest heating efficiencies (n = P-absorbed/P-launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the He-3 ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as similar to 20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic He-3 heating experiments when 5MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the He-3 heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with He-4) were confirmed in the H majority case, the He-3 concentration was the main handle on the heating efficiency in the second harmonic He-3 heating scenario.
  •  
6.
  •  
7.
  • Maddison, G. P., et al. (författare)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Tidskriftsartikel (refereegranskat)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
8.
  • Van Eester, D., et al. (författare)
  • Enhancing the mode conversion efficiency in JET plasmas with multiple mode conversion layers
  • 2011
  • Ingår i: AIP Conf. Proc.. - : AIP. - 1551-7616 .- 0094-243X. - 9780735409781 ; , s. 301-308
  • Konferensbidrag (refereegranskat)abstract
    • The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ( 3He)-D plasmas [2] and was recently tested in ( 3He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ( 3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[ 3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.
  •  
9.
  • Van Eester, D., et al. (författare)
  • Minority and mode conversion heating in (He-3)-H JET plasmas
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics.
  •  
10.
  •  
11.
  • Coenen, J. W., et al. (författare)
  • Tungsten erosion in the all-metal tokamaks JET and ASDEX Upgrade
  • 2012
  • Ingår i: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics. - 9781622769810 ; , s. 253-256
  • Konferensbidrag (refereegranskat)abstract
    • The tungsten source in the all W outer divertor and Be main wall configuration has been quantified mainly during L-mode plasmas and compared to AUG Data both gained from local spectroscopy. Results so far show differences between AUG and JET based on impurities in the plasma changing the sputter behavior. This stresses the need for detailed analysis of the divertor impurity composition and detailed molding in the future analysis. The H-Mode examples indicate at ELM dominated sputtering and a rather low averaged sputtering yield in general. Nitrogen seeding can change the divertor conditions significantly either increasing W sputtering or suppressing it due to local cooling, JET and AUG behave similarly. All together it is clear that by having low divertor temperature or a beneficial impurity composition sputtering can be controlled and is rather low as expected in an all metal environment.
  •  
12.
  • Korell, Julia, et al. (författare)
  • A population pharmacokinetic model for low-dose methotrexate and its polyglutamated metabolites in red blood cells.
  • 2013
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 52:6, s. 475-85
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Measurement of intracellular concentrations of methotrexate (MTX) and its polyglutamated metabolites (MTXGlu(2-5)) in red blood cells (RBCs) has been suggested as a potential means of monitoring low-dose MTX treatment of rheumatoid arthritis (RA). However, a possible correlation between RBC MTX and MTXGlu2-5 concentrations and clinical outcomes of MTX treatment in RA is debated. A better understanding of the dose-concentration-time relationship of MTX and MTXGlu(2-5) in RBCs by population pharmacokinetic modelling is desirable and will facilitate assessing a potential RBC concentration-effect relationship in the future.AIM: The purpose of this analysis was to describe the pharmacokinetics of MTX and MTXGlu(2-5) in RBCs. Secondary objectives included investigation of deglutamation reactions and the loss of MTX and MTXGlu(2-5) from the RBC.METHODS: A model was developed using NONMEM(®) version 7.2 based on RBC data obtained from 48 patients with RA receiving once-weekly low-dose MTX treatment. This model was linked to a fixed two-compartment model that was used to describe the pharmacokinetics of MTX in the plasma. A series of five compartments were used to describe the intracellular pharmacokinetics of MTX and MTXGlu(2-5) in RBCs. Biologically plausible covariates were tested for a significant effect on MTX plasma clearance and the intracellular volume of distribution of all MTX species in RBCs ([Formula: see text]). The developed model was used to test hypotheses related to the enzymatic deglutamation of MTXGlu(2-5) and potential loss of MTXGlu(2-5) from RBCs.RESULTS: The final RBC pharmacokinetic model required the intracellular volumes of distribution for the parent and metabolites to be set to the value estimated for the parent drug MTX alone, and the rate constants describing the polyglutamation steps were fixed at literature values. Significant covariates included effect of body surface area-adjusted estimated glomerular filtration rate on renal plasma clearance and effect of allometrically scaled total body weight with a fixed exponent of 0.75 on non-renal plasma clearance of MTX. The only significant covariate with an effect on [Formula: see text] was mean corpuscular volume (MCV). The model supported single deglutamation steps and a single mechanism of MTX and MTXGlu(2-5) loss from RBCs.CONCLUSIONS: The developed model enabled acceptable description of the intracellular kinetics of MTX and MTXGlu(2-5) in RBCs. In the future it can form the basis of a full pharmacokinetic-pharmacodynamic model to assess the time-RBC concentration-effect relationship of low-dose MTX treatment in RA.
  •  
13.
  • Korell, Julia, et al. (författare)
  • Comparison of intracellular methotrexate kinetics in red blood cells with the kinetics in other cell types
  • 2014
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 77:3, s. 493-497
  • Tidskriftsartikel (refereegranskat)abstract
    • AimTo assess the similarities in intracellular pharmacokinetics (PK) of methotrexate (MTX) in red blood cells (RBCs) and other cell lines. MethodsThree previously published PK models for intracellular MTX and MTX polyglutamate (MTXGlu(2-5)) concentrations were used: (i) a model for the kinetics in RBCs, (ii) a model for the kinetics in human breast cancer cells (HBCCs) and (iii) a model for the kinetics in various white blood cell (WBC) lines. All three models were used to simulate the response in a typical individual receiving 10mg oral MTX once weekly and the predicted steady-state concentrations (C-ss) and time to C-ss (t(ss)) were compared. ResultsThe HBCC model showed a lower C-ss for MTXGlu(2 and 3) and higher C-ss for MTXGlu(4 and 5) compared with the RBC PK model, while t(ss) and overall intracellular MTX exposure appeared similar. The WBC PK model showed much lower C-ss for the parent MTXGlu(1) and of t(ss) for all MTXGlu(n), as well as a much lower cumulative C-ss for MTXGlu(2-7) for the majority of the WBC cell lines. ConclusionRBC kinetics of MTX differ from the kinetics in other cell types such as WBCs and HBCCs to a variable degree. It is possible that similarly diverse profiles may exist across other cell lines, including those on the causal path in rheumatoid arthritis. Hence, there may not necessarily be a clear link between RBC MTX concentrations and disease control in rheumatoid arthritis.
  •  
14.
  • Pan, Shan, et al. (författare)
  • Assessment of the Relationship Between Methotrexate Polyglutamates in Red Blood Cells and Clinical Response in Patients Commencing Methotrexate for Rheumatoid Arthritis
  • 2014
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 53:12, s. 1161-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic drug monitoring in patients with rheumatoid arthritis (RA) receiving methotrexate (MTX, MTXGlu(1)) has not been established. In this study, we aim to explore the relationship between red blood cell (RBC) concentrations of MTX and its polyglutamate metabolites (MTXGlu (n) ; n = 2, 3, 4, 5) and clinical response in RA patients commencing MTX. The binding activity of MTXGlu (n) to three putative enzymes involved in the MTX mechanism of action-dihydrofolate reductase, thymidylate synthase, and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase-was simulated. RBC MTXGlu (n) concentrations that gave the highest inhibition activity across all three enzymes were linked with the disease activity score DAS28-3v (C-reactive protein [CRP]). A population pharmacokinetic-pharmacodynamic model was developed to describe the relationship between RBC MTX polyglutamate concentrations and clinical response in 12 RA patients commencing MTX. The highest inhibition activity was with RBC MTXGlu(3-5). These polyglutamates were further evaluated for their relationship with DAS28-3v (CRP). Three of the 12 patients had a high DAS28-3v (CRP) at baseline (mean = 6.1) and showed a delayed response to MTX treatment. The remaining nine patients with a lower DAS28-3v (CRP) baseline (mean = 3.6) showed an immediate response. The developed MTX pharmacokinetic-pharmacodynamic model provided an acceptable description of the observed DAS28-3v (CRP) across all patients. The developed model describes a longitudinal relationship between RBC MTXGlu(3-5) concentrations and DAS28-3v (CRP) in patients with RA commencing MTX. Further work is required to determine whether measurement of RBC MTX polyglutamates might be useful for dose individualisation in patients with RA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy