SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stanicic Ivana 1994) srt2:(2023)"

Sökning: WFRF:(Stanicic Ivana 1994) > (2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kong, Xiangrui, et al. (författare)
  • Phase recognition in SEM-EDX chemical maps using positive matrix factorization
  • 2023
  • Ingår i: Methodsx. - 2215-0161. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Images from scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spec- troscopy (EDX) are informative and useful to understand the chemical composition and mixing state of solid materials. Positive matrix factorization (PMF) is a multivariate factor analysis tech- nique that has been used in many applications, and the method is here applied to identify factors that can describe common features between elemental SEM-EDX maps. The procedures of con- verting both graphics and digital images to PMF input files are introduced, and the PMF analysis is exemplified with an open-access PMF program. A case study of oxygen carrier materials from oxygen carrier aided combustion is presented, and the results show that PMF successfully groups elements into factors, and the maps of these factors are visualized. The produced images provide further information on ash interactions and composition of distinct chemical layers. The method can handle all types of chemical maps and the method is not limited solely to SEM-EDX although these images have been used as an example. The main characteristics of the method are:center dot Adapting graphics and digital images ready for PMF analysis.center dot Conversion between 1-D and 2-D datasets allows visualization of common chemical maps of elements grouped in factors.center dot Handles all types of chemical mappings and large data sets.
  •  
2.
  •  
3.
  • Purnomo, Victor, 1992, et al. (författare)
  • Performance of iron sand as an oxygen carrier at high reduction degrees and its potential use for chemical looping gasification
  • 2023
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361 .- 1873-7153. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron sand as an industrial by-product has a reasonable iron content (35 wt% Fe) and low economical cost. The reactivity of iron sand as an oxygen carrier was examined in a bubbling fluidized bed reactor using both gaseous and solid fuels at 850–975 °C. Pre-reductions of iron sand were performed prior to fuel conversion to adapt the less-oxygen-requiring environment in chemical looping gasification (CLG). Based on the investigations using CO and CH4, iron sand has an oxygen transfer capacity of around 1 wt%, which is lower than that of ilmenite. The conversion of pine forest residue char to CO and H2 was higher when using iron sand compared to ilmenite. Depending on the mass conversion degree of iron sand, the activation energy of pine forest residue char conversion using iron sand was between 187 and 234 kJ/mol, which is slightly lower than that of ilmenite. Neither agglomeration nor defluidization of an iron sand bed occurred even at high reduction degrees. These suggests that iron sand can be utilized as an oxygen carrier in CLG. Furthermore, this study presents novel findings in the crystalline phase transformation of iron sand at various degrees of oxidation, altogether with relevant thermodynamic stable phases.
  •  
4.
  • Stanicic, Ivana, 1994 (författare)
  • Chemical Transformation of Inorganic Species in Thermochemical Conversion of Waste-Derived Fuels - The Role of Oxygen Carriers
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Waste-derived fuels are used increasingly in heat and power production systems in Sweden. Thermal conversion of waste-derived and biomass fuels offers the possibility of achieving carbon dioxide-neutral or even negative emissions. To limit global warming, it is essential to integrate these systems with carbon capture and storage. However, using alternative fuels raises challenges due to their complex compositions and their contents of heavy metals and other inorganic species. Chemical looping technologies have great potential for lowering costs for CO2 capture and reducing emissions of pollutants, such as NOx. These processes utilize metal oxides, or oxygen carriers (OCs), to transfer oxygen from air to fuel. However, the fates of the inorganic ash species in the presence of OCs are not well understood. The aim of this thesis is to provide a better understanding of the chemical transformations that occur in chemical looping applications, focusing on the heavy metals Zn, Cu, and Pb. In this thesis, the reaction pathways of Zn, Cu and Pb are studied using combined theoretical and experimental approaches. Samples derived from combustion and gasification processes that utilize OCs are studied in detail by XRD, SEM-EDX and XPS. Zn and Cu are observed to interact with the OC and form ferrites under both combustion and gasification conditions. The formation of ferrites is shown to play an important role in the pathways for these elements. For the Fe-Ti-based OC ilmenite, Zn is incorporated into the ash layer while Cu is found to accumulate inside the ilmenite particles. The interaction between Zn and ilmenite is studied in greater detail in laboratory-scale experiments. It is observed that reaction with Zn is promoted after ilmenite has undergone consecutive reduction and oxidation cycles, owing to the formation of an Fe-rich layer on the external surface. Pb is concentrated in the fly ash regardless of the chemical looping technology and OC types investigated in this thesis. The chemical speciation of Zn, Cu, and Pb in chemical looping processes is further considered with respect to the oxygen carrier type, temperature, reduction potential, and other ash components. The correlation of theoretical and experimental observations enables the identification of systems that were not well-described by thermodynamic equilibrium calculations (TECs). To improve the predictive potentials of TECs, thermodynamic databases are expanded by incorporating data i) available in the literature, and ii) from first principle calculations. For the latter, thermodynamic data is obtained for experimentally identified crystalline phases that are not available in the literature. This expansion has contributed to the updated and most comprehensive thermodynamic database for combined OC and ash systems. The database was implemented to study the phase stability during chemical looping combustion (CLC) of waste-derived fuels, providing the first insights into the chemical speciation of inorganic ash species. The results indicate that a major fraction of the problematic compounds exits the fuel reactor with the gas, preventing corrosion of the heat transfer surfaces in the air reactor.
  •  
5.
  • Stanicic, Ivana, 1994, et al. (författare)
  • Investigating the Interaction between Ilmenite and Zinc for Chemical Looping
  • 2023
  • Ingår i: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 37:11, s. 7856-7870
  • Tidskriftsartikel (refereegranskat)abstract
    • The iron and titanium oxide ilmenite is a benchmark oxygen carrier for chemical looping combustion (CLC) and oxygen carrier-aided combustion (OCAC). Both of them are combustion technologies for biomass and waste fuels with lower emissions and low costs for carbon capture. Here, the interaction between the ash component zinc and oxygen carrier ilmenite is studied in a two-staged vertical tube reactor. Three types of ilmenites─Norwegian rock ilmenite, synthesized ilmenite, and ilmenite extracted after 200 h of OCAC in a full-scale fluidized bed unit─were exposed to gas-phase Zn and ZnCl2. Following the exposure, samples were analyzed concerning morphology, chemical distribution, composition, and crystalline phases. The observations were complemented with thermodynamic equilibrium calculations. It is observed that the iron-rich layer formed on the external surface of rock ilmenite after activation promotes the reaction with both gaseous zinc compounds, with zinc ferrite formed in the external Fe-rich layer. In contrast, ilmenite with no segregation of Fe and Ti showed to interact less with zinc species. Metallic Zn penetrated the particles, while the interaction depth was shallow with ZnCl2 for all investigated ilmenite oxygen carriers. The gaseous conditions, particle ash layer composition, and iron availability are shown to play an important role in the interaction between zinc compounds and ilmenite particles. Based on these results, interaction mechanisms for Zn and ZnCl2 are proposed. This interaction could have environmental implications for the toxicity of ash streams from waste combustion in addition to possibilities for Zn recycling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy