SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tivander Johan 1973) srt2:(2015-2019)"

Sökning: WFRF:(Tivander Johan 1973) > (2015-2019)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wagner, Michelle, et al. (författare)
  • ORAMA Project - D6-6 Technical Final Report and Recommendations
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Securing the sustainable access to and supply of raw materials, and particularly of Critical Raw Materials (CRM), is of high importance for the European economy. Complex primary and secondary resources contain many different raw materials. The inability to easily produce reliable statistics about reserves, resources, stocks, and flows of raw materials limits the understanding of global trends in resource availability and hampers formulation of mineral and waste policies. This ultimately affects supply chain security and strategic decisions by industry. Hence, it is an issue of great concern for the European Commission (EC) and many other stakeholders. The ORAMA project (Optimising quality of information in RAw MAterial data collection across Europe) seeks to contribute to better supply of raw materials by improving the quality of harmonised raw materials data collection and information sharing among the different levels within the European Union (EU). Data collection practices for primary and secondary raw materials (PRM and SRM) face specific challenges in EU Member States (MS). For PRM data, the main concerns are related to data availability, geographical coverage, accessibility, harmonisation, interoperability, quality, and thematic coverage. The reporting of primary mineral resources and reserves statistics is currently carried out by a wide variety of systems, standards or codes which are not directly comparable. Hence, it is currently impossible to produce reliable pan-European figures for resources for any mineral commodity. ORAMA addresses these issues by recommending a single standard for reporting of resource data, the United Nations Framework Classification (UNFC), a framework for reporting mineral resource data developed by the UN. To enable and encourage data providers to adopt this standard for European PRM data, the ORAMA project has developed resources in the form of a range of training materials and good practice examples. The ORAMA project demonstrates that the analysis of various classifications and reporting systems that sit within the INSPIRE (Infrastructure for Spatial Information in the European Community) concept and data services, are not opposing but rather integral elements of the proper European level data collection and production of information for PRM and SRM. The use of UNFC/UNRMS (United Nations Resource Management System) in the framework of the INSPIRE compliant data service can significantly contribute to sustainable resource management taking into account not only geological knowledge and raw materials potential but also environmental and social issues, based on using the national/regional legislative elements for exploration and exploitation as well. In the case of SRM, the challenges are somewhat different. Regarding mining waste (MIN), the lack of information on deposit characteristics (composition, volumes, and suitable processing technology) is a huge barrier in the identification of recovery potential of the valuable materials that remain in the waste. Furthermore, the lack of a single reporting standard commonly accepted at EU level has created a dispersion of existing information in various systems and project deliverables. In the case of electrical and electronic equipment (EEE) and batteries, beyond the lack of harmonisation, substantial data gaps exist for the market inputs, materials consumption and stocks, and for waste electrical and electronic equipment (WEEE) for unaccounted flows ending up being scavenged, metal scrap and export channels. For vehicles, huge amounts of data, both on stocks and flows and on composition, are systematically collected by authorities and the manufacturing industry, but are only publicly available in a somewhat too aggregated form (placed on market (POM), stock, waste flows) or not at all (composition data). Even when collected, the reporting of the composition of these flows on a product, component and materials level are currently poorly described across all MS, and when actually ending up in recycling processes, the recovery efficiency for all elements and CRMs, in particular, is disappointing. In order to improve the data collection and reporting practices for SRM a structured review and inventory were made followed by a data gap analysis which resulted in the developments of recommendations and subsequently the selection of 6 case studies. The SRM case studies tackle the main data gaps encountered in the analysis and developed tools that will enable the improvement and harmonisation of collection and reporting practices in MS, treatment facilities, data providers, academia among others. The ORAMA project recommends to establish more structured and continuous funding for realising and maintaining a European data infrastructure for tracking both PRM and SRM. The current project-by-project based financing is insufficient and not sustainable to properly track and understand Europe’s strengths and weaknesses in the early resource intensive stages of global supply chains.
  •  
2.
  • Sigurdson, Tryggve, et al. (författare)
  • WindChoir - A Tool for Supporting Localization of Wind Power by Representing Wind Resources, Their Extraction and Cumulative Environmental Impacts on a Map
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The WindChoir tool aims to enable stakeholders to compare locations for new wind power farms from both a wind power and an environmental point of view. Such a location comparison needs to both consider the distribution of the wind resource, the technology used, techno-economic factors and cumulative environmental impacts of wind farms and other significant stressor sources. The tool aims to enable comparisons between sites, between effects of existing stressors and wind power stressors as well as between various technologies. The representation of the environmental effects, which is a main aim, is based on a relative and regional risk assessment model (Halpern et al., 2008; Landis & Wiegers, 1997) making it possible to make a map of cumulative environmental impacts of many stressors on many ecological endpoints using spatial information. In addition to existing or potential wind power farms the WindChoir tool is setup to include multiple anthropogenic stressor sources, e.g. industry plants, roads and their traffic volumes, etc., which distributions and intensities are calculated based on available spatial data. Models are used to transform these source distributions into a set of relevant stressor distributions and intensities including noise, light, displacement, and chemical emissions. The endpoints are defined at different ecological aggregation levels: habitats, representing groups of species occurring under particular biogeophysical conditions; specifically identified representative groups of species, e.g. raptors; or specified single key species such as golden eagle. Their distributions are modelled based on data from multiple sources including novel ground cover data (10mx10m pixels), elevation, and observations. Humans are also included as an ecological endpoint. A matrix representing the sensitivity of each ecological endpoint to each stressor is developed based on ecological cause effect models and observation data. In each pixel the distributions of stressor intensities and endpoints are matched and the cumulative impact is calculated with a simple algorithm using the sensitivity matrix. The results can be displayed as maps or causality diagrams where the contribution from each stressor source to the impact on each endpoint can be seen. Statistics for evaluation of uncertainty can also be extracted. In this way the impact from of a wind farm can be set in relation to the impact from other existing anthropogenic stressor sources. Locations of relevant technical, economical, and juridical factors such as wind resource, electricity grid, protected areas, etc., can be layered on the environmental impact map to provide a broader spectrum decision support.
  •  
3.
  • Hossain, Muhammed Noor, et al. (författare)
  • Life cycle inventory of power producing technologies and power grids at regional grid level in India
  • 2019
  • Ingår i: International Journal of Life Cycle Assessment. - : Springer Science and Business Media LLC. - 1614-7502 .- 0948-3349. ; 24:5, s. 824-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Indian electricity production mix, technology level, and local production conditions vary across the states and union territories. This variability is obscured in existing national-level life cycle inventories of Indian power producing technologies and power systems, which potentially leads to inaccurate results from LCA studies that include Indian activities. This study aims to create a consistent regionalized inventory model of Indian power system parameters and to evaluate how that influences life cycle impact assessment (LCIA) calculations. Methods Data collection covers state-specific key parameters of domestic power production and distribution, and inter-exchanges among the regional grids and with other countries in 2012–2013. However, such regionalization work faces some data availability challenges. Power plant parameter data (e.g., efficiency, fuel quality, exact technology used) are mostly unavailable on plant level for India; if at all, relevant data are available on a state level. Moreover, local emission data are also mostly unavailable except emissions of CO2. Quantities of other important emissions (NOx, SOx, CH4, CO, PM) are, therefore, calculated based on emission factors from literature. Results and discussion Variation in electricity production volumes among the states and regional grids are found notably high. Six states contribute 55% of the national power supply, whereas ten states contribute only 2.1% to the total. Moreover, the five regional electricity grids—Eastern, Western, Southern, Northern, and North-eastern grids—show high variation in production mixes. These differences have a considerable impact on LCIA results. For instance, the contribution to the global warming potential per 1 kWh of electricity supplied to the grid is nearly twice as high in the Eastern grid as in the North-eastern grid. Furthermore, transformation and transmission losses are found to be high in the Indian electricity grids with an average of 17% technical losses along the transmission chain from high voltage to the low voltage. Conclusions Hence, we conclude that the inventory data produced in this study on Indian electricity production and distribution at grid level, taking local variations in technology mix and key parameters into account, enables higher accuracy in life cycle assessment studies compared to using average national-level data. Full access link: https://rdcu.be/9lPs
  •  
4.
  • Nordelöf, Anders, 1975, et al. (författare)
  • Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel
  • 2019
  • Ingår i: Transportation Research Part D: Transport and Environment. - : Elsevier BV. - 1361-9209 .- 1879-2340. ; 75, s. 211-222
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores life cycle environmental impacts of city buses, depending on the: (1) degree of electrification; (2) electricity supply mix, for chargeable options; and (3) choice of diesel or hydrogenated vegetable oil (HVO), a biodiesel, for options with combustion engine. It is a case study, which uses industry data to investigate the impact on climate change, a key driver for electrification, and a wider set of impacts, for average operation in Sweden, the European Union and the United States of America. The results show that non-chargeable hybrid electric vehicles provide clear climate change mitigation potential compared to conventional buses, regardless of the available fuel being diesel or HVO. When fueling with HVO, plug-in hybrid and all-electric buses provide further benefits for grid intensities below 200 g CO₂ eq./kWh. For diesel, the all-electric option is preferable up to 750 g CO₂ eq./kWh. This is the case despite batteries and other electric powertrain parts causing an increase of CO₂ emissions from vehicle production. However, material processing to make common parts, i.e. chassis, frame and body, dominates the production load for all models. Consequently, city buses differ from passenger cars, where the battery packs play a larger role. In regard to other airborne pollutants, the all-electric bus has the best potential to reduce impacts overall, but the results depend on the amount of fossil fuels and combustion processes in the electricity production. For toxic emissions and resource use, the extraction of metals and fossil fuels calls for attention.
  •  
5.
  • Nordelöf, Anders, 1975, et al. (författare)
  • Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries
  • 2019
  • Ingår i: Batteries. - : MDPI AG. - 2313-0105. ; 5:51, s. 1-15
  • Forskningsöversikt (refereegranskat)abstract
    • This study presents a review of how the end-of-life (EOL) stage is modelled in life cycle assessment (LCA) studies of lithium-ion batteries (LIBs). Twenty-five peer-reviewed journal and conference papers that consider the whole LIB life cycle and describe their EOL modelling approach sufficiently were analyzed. The studies were categorized based on two archetypal EOL modelling approaches in LCA: The cutoff (no material recovery, possibly secondary material input) and EOL recycling (material recovery, only primary material input) approaches. It was found that 19 of the studies followed the EOL recycling approach and 6 the cutoff approach. In addition, almost a third of the studies deviated from the expected setup of the two methods by including both material recovery and secondary material input. Such hybrid approaches may lead to double counting of recycling benefits by both including secondary input (as in the cutoff approach) and substituting primary materials (as in the EOL recycling approach). If the archetypal EOL modelling approaches are not followed, it is imperative that the modelling choices are well-documented and motivated to avoid double counting that leads to over- or underestimations of the environmental impacts of LIBs. Also, 21 studies model hydrometallurgical treatment, and 17 completely omit waste collection.
  •  
6.
  • Nordelöf, Anders, 1975, et al. (författare)
  • Miljöpåverkan från elektriska stadsbussar
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Livscykelanalys (LCA) är ett väl beprövat verktyg för att utreda miljöpåverkan hos varor och tjänster. Omfattande forskning med LCA behandlar klimatpåverkan från elektriskt drivna personbilar, men få studier adresserar påverkan av att elektrifiera stadsbussar för kollektivtrafik (Nordelöf et al., 2014), och särskilt saknas kunskap om eldrift i kombination med olika biobaserade bränslen. I denna fallstudie, som utgår från den s.k. ElectriCity-linjen i Göteborg, undersöks hur miljöpåverkan från bussar i stadstrafik förändras vid olika grad av elektrifiering, beroende på hur laddnings-elen produceras och med valet av bränsle. Syftet är att skapa ett kunskapsunderlag för strategisk planering av kollektivtrafik. Studien har genomförts i ett samarbete mellan Miljösystemanalys vid Chalmers, IVL Svenska Miljöinstitutet och Volvo Bussar. Projektet har finansierats av Västra Götalandsregionen. Studien omfattar sju olika drivlinevarianter som är implementerade i samma stadsbussmodell, baserat på Volvos 7900-serie (Volvo Bussar, 2011, 2016a, c, b). Två varianter drivs enbart med förbränningsmotor (en med dieselmotor och en med gasmotor) och en är har helt elektrisk drift. Däremellan finns två steg med ökad elektrifieringsgrad för både diesel- och gasdrivlinan – hybrid och laddningsbar hybrid. Samtliga dieseldrivna bussar har utöver diesel även analyserats för drift med HVO, en typ av syntetisk diesel från bioråvaror, och gasbussalternativen för drift med biogas. Framställningen av laddnings-elen omfattar tre alternativ: lokalt genererad vindkraft, Sveriges och EU:s konsumtionsmix. Studien utgår från år 2017 vid modelleringen av tillverkning, användning och End-of-Life (den fas då fordonet demonteras och delar återvinns). Miljöpåverkansbedömningen redovisas i fem avsnitt: klimatpåverkan, försurning och övergödning, toxicitet, luftföroreningar och resursförbrukning. Materialsammansättningsdata samt uppgifter om förbrukning av el och bränsle har tillhandahållits (uppmätt eller estimerat) av Volvo Bussar AB. Data från Volvos fabriker för tillverkning och visst leverantörsdata har kompletterats med litteraturkartläggningar av produktion och LCA-inventeringsdata från databasen Ecoinvent (Wernet et al., 2016). Passageraruppgifter gäller specifikt för drift på ElectriCity-linjen (linje 55). Resultaten visar att miljöpåverkan för stadsbussar inte entydigt följer graden av elektrifiering, utan att den varierar både mellan och inom miljöpåverkanskategorierna, med laddnings-elen och bränslet som avgörande parametrar. Emellertid, gällande klimatpåverkan så har de helt elektriska bussarna genomgående lägst emissioner om de laddas med lokal vindkrafts-el eller svensk elmix. En ökad grad av elektrifiering ger sjunkande utsläpp för alla bränslen. Om alternativet är att tanka med diesel så står sig slutsatsen även vid laddning med EU:s konsumtionsmix. I stort är mönstret liknande för de miljöpåvekanskategorier som orsakas av andra luftburna emissioner (försurning, övergödning och luftföroreningar). Miljöpåverkanskategorierna toxicitet och resursanvändning skiljer sig däremot mer från resultatet för klimatpåverkan. För toxicitet så ökar hälsopåverkan hos människor något med graden av elektrifiering, som en följd av ökade utsläpp av tungmetaller. För resurser så är resultatet beroende på utvärderingsmetoden – den helt elektriska bussen eller de helt förbränningsmotordrivna alternativen får lägst resursförbrukning eftersom de undviker att kombinera användning av olika men högt skattade metaller. Valet av strategi för att minimera miljöpåverkan beror på hur man prioriterar mellan olika typer av miljöbelastning, vilken laddnings-el som går att upphandla och vilka råvaror som används för att producera biobränslen. Både HVO och biogas har relativt låg påverkan avseende flera miljöproblem, framförallt klimatpåverkan, eftersom avfall nu utgör den huvudsakliga råvaran för deras framställning. Med en ökad efterfrågan finns det risk att en större andel livsmedelsgrödor används och då skulle de resultat som redovisas för biobränslen förskjutas uppåt. Omvänt gäller för laddnings-elen att det fossila innehållet i konsumtionsmixen för EU troligen sjunker pga. ett skifte från kolkraft till naturgas och ökad förnyelsebar energiproduktion (IEA, 2017). Om fokus sätts på klimatet och lokal miljöpåverkan så visar studien att helt elektriska fordon är att föredra i Sverige jämfört med övriga studerade alternativ. Det frigör dessutom HVO och biogas för användning i andra applikationer. I EU i stort, så ger alla grader av elektrifiering lägre utsläpp än att köra konventionella bussar på diesel. Samtidigt visar studien att i EU-länder vars el-produktion har ett fossilt innehåll som är över eller runt EU-snittet, och samtidigt tillgång till biobränslen som baseras på restprodukter och avfall, så är det fördelaktigt att använda hybridbussar utan laddning.
  •  
7.
  • Palander, Sara, 1986, et al. (författare)
  • Swedish Life Cycle Center Livscykeldata - en förutsättning för hållbar innovation, (Life cycle assessment data – a prerequisite for sustainable innovation)
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • ”Life Cycle Assessment Data - a prerequisite for sustainable innovation” is an agenda which demonstrates the benefits of a common national strategy for life cycle assessment data (LCA data). LCA data can be used by orga- nizations to measure, follow up and reduce environmental impact. LCA data can also be used to ensure credible and reliable marketing of environmental performance. Increased availability of reliable LCA data has the potential to strengthen Swedish competitiveness on the international market and make Sweden a more attractive country in which to perform operations. It has become clear throughout the project that there is a need for LCA data in Sweden. Environmental authorities, government agencies, municipalities, companies and academia among others have been identified to be in need of LCA data. The most commonly sought data concerns energy production, transport, commodity produc- tion and waste management. The publishing of collected data results in a potential gain, where data can be reused and individual businesses can avoid recollecting the same data. Small businesses that lack the means to acquire data and businesses in the public sector that can use data in public procurement to achieve their environmental goals, have been identified as the ones in most need for open (free) data. The public sector is advised to lead the way by publishing LCA data describing their own businesses, such as municipal energy companies. The UN is governing an extensive intergovernmental cooperation in order to link existing LCA databases into a single information network. Although Sweden have not yet contributed with any concrete data, Swedish participants are currently active in this cooperation. The proposed strategy includes identifying national reference data, that is, quality assured data representative of the Swedish operations, which can meet the needs of a large group of stakeholders. Reference data enables the focus of discussion to shift from which data are applicable to manage the environmental issues of concern. Through a joint process, unnecessary work can be avoided for organizations that are in need of comparable data. Procedures and requirements for how the data will be managed needs to be agreed upon. There are a number of key stakeholders in Sweden who have the knowledge and skills necessary to design a reference data system. Other countries have already implemented such systems and can function as role models. Securing of funds for collection, compilation, publication and provision of data is needed, while details are yet to be determined at the time of publication of this agenda. The lack of a clear political affiliation of the life cycle thinking is a challenge, as it links the environment, industry, and society together. The lack of understanding for the potential of open data in general and a lack of understanding for the benefits of LCA data in particular represents some of the identified obstacles in this agenda. Further obstacles includes that the benefits are spread over several, sometimes weak stakeholders, and that data need to reach a critical mass to become really useful. By making national reference data available to the public the chances increase significantly for all companies and organizations operating in Sweden to increase awareness of their products and services from a life cycle perspective. This is a prerequisite for achieving real sustainable solutions throughout the value chain. (Swedish Life Cycle Center, Report no. 2016:5)
  •  
8.
  • Tivander, Johan, 1973 (författare)
  • A Minimal Ontology Pattern for Life Cycle Assessment Data
  • 2015
  • Ingår i: 6th Workshop on Ontology and Semantic Web Patterns (WOP 2015); CEUR Workshop Proceedings. - 1613-0073. ; 1461
  • Konferensbidrag (refereegranskat)abstract
    • Life Cycle Assessment (LCA) is the study of the environmental impact of products taking into account their entire life-span and production chain. This requires gathering data from a variety of heterogeneous sources into a Life Cycle Inventory (LCI). LCI preparation involves the integration of observations and engineering models with reference data and literature results from around the world, from different domains, and at varying levels of granularity. Existing LCA data formats only address syntactic interoperability, thereby often ignoring semantics. This leads to inefficiencies in information collection and management and thus a variety of challenges, e.g., difficulties in reproducing assessments published in the literature. In this work, we present an ontology pattern that specifies key aspects of LCA/LCI data models, i.e., the notions of flows, activities, agents, and products, as well as their properties.
  •  
9.
  • Tivander, Johan, 1973 (författare)
  • Environmental concerns of metals in Li-ion batteries - Implications for recycling
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This literature study provides an overview of the current knowledge of environmental concerns from the use of metals in LIBs, with the purpose to identify what elements are most important to recycle from an environmental and resource perspective. Impacts are assessed along the life cycle of batteries. A combined evaluation of criticality studies, supply and demand prognoses, and LCA studies point out the potential future supply risk of lithium. In order to meet future Li demands, largely driven by an expected rapid growth of EV production, Li production capacity must increase and the limited reserves implies recycling of Li must increase in a medium (decadal) time perspective. Li is currently not recycled to any significant extent as there is little commercial value of lithium species resulting from current recycling practices. Cobalt is identified as a critical element. Total Co resources and reserves are limited and a large part of total Co demand is projected to come from batteries. Recycling processes for Co are however in commercial use.The production of batteries and especially the manufacturing of active material matrices are generally pointed out as high contributor to environmental impact in battery life cycles. In LCAs of EVs LIB production contributes significantly to the total impact per km accounting both for WTW and equipment life cycle of the vehicle. Assumptions about electricity production as well as recycling scenario has a large impact on results regarding the overall performance of the EV per km.The refinement of elements including Li to active anode and cathode material is energy intensive and expensive. Hence, energy savings and corresponding avoided environmental burden significantly depend on in what form and at what stage the recycled metal products are fed back in the production of new batteries. Assessment of impact factors for extraction and emission of elements from LCIA methods combined with average elemental composition of LIBs indicate that high potential impact from emissions of Mn and Cu. This suggests that efforts to avoid Mn and Cu emissions from end-of-life processes including recycling should be prioritized.The rapid development of LIB technology makes it difficult to assess. Recycling technologies are also under development. Much ongoing development of technologies, policies and markets, scarce and often inconclusive data makes it difficult to predict the future.The study has been conducted within the project Recycling of metals from spent Li-ion batteries (LIBs) running 2014-2016 and funded by the Swedish Energy Agency (Energimyndigheten).
  •  
10.
  • Tivander, Johan, 1973, et al. (författare)
  • Power Take-Off System for a Subsea Tidal Kite - LCA report
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Executive summary The marine renewable energy technology company Minesto has developed and patented the Deep Green ocean energy power plant, where power is generated by a turbine that is attached to a wing moved like a kite by the water current. It can operate at ocean currents less than 2.5 m/s, which adds a new ocean energy potential to the market (Minesto, 2018a). The PowerKite project received funding from the European Union’s Horizon 2020 research and innovation programme and was launched to enhance the structural and power performance of the power take-off (PTO) of Deep Green. The environmental impacts of the technology are also assessed by the PowerKite project (WP 6). This Life Cycle Assessment (LCA), was carried out at the Environmental System Analysis division at Chalmers University of Technology, Gothenburg, Sweden, with Minesto as the main data provider. LCA is a well-established tool to assess a range of environmental impacts of a technical system (Baumann & Tillman, 2004). This initial LCA is intended to provide first indications of the environmental performance of the Deep Green Utility (DGU) tidal current power plant. This study is designed so results may guide and influence the design of hardware and operational procedures of the power plant as well as provide a benchmark compared to other electricity power generation technologies. Deliverables of the PowerKite project use a prototype design as starting-point and some of the conclusions will therefore not fully represent the potential of the Deep Green technology. At the time of writing, the first DGU power plant is being installed in Holyhead Deep in the waters west of Holyhead, Wales. A prospective model has been assessed based on the initial plans for the Holyhead site with an array of 24 kites, four tidal marine substation (TMS), PTO to grid cables, and an onshore workshop and grid substation. The generator rated capacity of the kites assessed is 500 kW, with assumed power productions ranging from 1 to 2 GWh/year per kite, corresponding to a total installed capacity of 12 MW and a capacity factor between 23% and 46%. Since the output might increase depending on the location (installing in a site with higher flows), an additional scenario reflecting a more favourable tidal site has been assessed with 18 kites with a rated capacity of 750 kW and a 3 GWh/yr average power output, corresponding to a total installed capacity of 13.5 MW and a 46% capacity factor. In a continuous ocean current, Deep Green can operate at a capacity factor in the range of 70-95%. Downtime is then only due to maintenance, not tidal cycles. This cradle to grave LCA of the DGU power plant includes material resource extraction, processing, component manufacturing, power plant construction, operation, electricity distribution, maintenance, dismantling, waste management with recycling, and transports. The function assessed is one (1) kilowatt hour electric energy (kWhe) delivered to the end consumer. All environmental impacts are calculated based on this functional unit. The resulting impacts of the DGU power plant is in range with other renewable technologies in the impact categories land occupation, non-renewable energy demand, global warming potential (GWP), freshwater eutrophication, freshwater ecotoxicity, and particulate matter formation. Our results indicate that there are no major concerns in terms of impacts from the DGU in relation to the aforementioned categories. It is well known that fossil fuel combustion technologies in general have a substantially worse environmental performance than renewable energy technologies in these categories. (Nuclear power has not been compared). An exception is the impact on terrestrial land occupation where in some cases PV, hydropower, and land based wind power, are performing less well. Sea area occupation might be a more relevant issue to assess for the DGU power plant but it is not included in this study as it is still debated how to account for this. The total GWP impact of the Holyhead site, including grid distribution losses and emissions, ranges between 22 to 50 g CO2 eq/kWhe, depending on different scenarios and uncertainties in the system. Assuming the same array in a continuous ocean current would result in 14 to 18 g CO2 eq/kWhe. For the favourable site scenario, the GWP impact is 20 g CO2 eq/kWhe. These results indicate that DGU power plant emissions are in the same range as other ocean energy technologies, with reported ranges for off-shore wind power from 15 to 105 g CO2 eq/kWh (Uihlein, 2016) or 11 to 20 g CO2 eq/kWhe (Hertwich et al., 2014). Significant contributors to the GWP are the frequent replacements of the tether, emissions from offshore vessels used for construction and maintenance as well as the concrete and steel material production for the gravity base foundations. Another important indicator that has been derived is the energy return on investment (EROI). It describes the relationship between energy generated and energy required throughout the life cycle of the plant. The energy required includes non-renewable and renewable sources as well as chemically bound energy in plastic materials made from fossil carbon resources. The power plant lifetime divided by the EROI yields the energy payback time. The estimate for EROI at the Holyhead site was found to be between 4.6 to 8.7, which can be compared with that of the wind power plants ranging between 6.1 to 33.5 (Kubiszewski, Cleveland, & Endres, 2010). This corresponds to an energy payback period of 3 to 6 years for the DGU power plant. The major contributor to this energy demand is the maintenance phase, especially the manufacturing of the tether replacement parts, and the diesel used in on-site ships during construction and maintenance. When examining the contributions from individual processes it is evident that three main activities namely diesel combustion, steel production and utility electricity generation contribute significantly to a range of impact categories. The diesel combustion refers to fuel combustion mainly for construction and maintenance offshore vessel trips. Impact from steel production is directly connected to the amount of steel that is needed in components including replacement needs during maintenance. Emissions from utility electricity generation is mainly due to the use of fossil fuel technologies in the UK electricity mix, in this system mainly consumed by material production. To improve the environmental performance of the DGU power plant system assessed in this LCA, the results points to that focus should be put foremost on a high capacity factor; less material-intensive kite foundation and mooring system; efficient offshore vessel utilisation during construction and maintenance, and possibilities of using alternatives to diesel fuel; lower material requirements, mainly steel, while not reducing component life-times; investigate possibilities to extend the lifetime of the tether and using recyclable materials; and strive for high recycling of steel and copper. Since the Deep Green technology is still at a very early stage of development, improvements of its technical and environmental performance are expected. This LCA concludes that the environmental performance of the DGU power plant is in the same range as other renewable technologies. The environmental performance of DGU technology is likely to improve significantly with the development of the technology as, according to Arvesen and Hertwich (2012), there are strong economies of scale for wind turbines with power ratings up to 1 MW. Other possible gains from upscaling would be increasing the array (adding more kites), likely reducing common parts needed per kWhe, as well as more efficient component manufacturing from large scale implementation of the technology.
  •  
11.
  • Tivander, Johan, 1973, et al. (författare)
  • Återvinning av metaller ur uttjänta Li-ion batterier - Slutrapport
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Syftet med projektet var att ta fram underlag för resurseffektiva termiska återvinningsmetoder för de litium-jonbatterier som används och kommer att användas i olika applikationer som exempelvis fordon, elektronik, handverktyg och energilagring. Möjligheter till ökad energilagring är avgörande för utvecklingen av flera förnybara energisystem som exempelvis vind och sol men även nya batteritekniker har stor potential att driva utvecklingen av nya energisystem framåt. De kommersiella processer som finns tillgängliga idag för återvinning av litium-jonbatterier är fokuserade på att återvinna vissa strategiskt viktiga metaller såsom kobolt. Sammanställning av kunskap i befintlig litteratur visar på vikten att återvinna Li från uttjänta batterier med den predikterade kraftiga ökningen av Li-jon batterier. Co är identifierat som kritiskt element och en stor del av totala användningen går idag till lithium-jonbatterier. Ytterligare en viktig aspekt ur ett nordiskt perspektiv är att hitta lokala tekniska lösningar för den starkt växande mängd uttjänta batterier som förväntas komma till återvinningsindustrin.Detta projekt har därför syftat till att ta fram grundläggande kunskap om vilka möjligheter som finns att återvinna metaller, framförallt Co, Li, Al och Cu, ur batterierna. Den första delen i projektet har fokuserat på möjligheten att återvinna aluminium och koppar genom att smälta batterier utan förbehandling tillsammans med sekundärt aluminium som smälts om till nya produkter. Koppar används som legeringsmetall i aluminium och därför är det en fördel om koppar som finns i batterierna fördelas till aluminiumsmältan. Resultat från de studier som genomförts visar att det finns potential att återvinna aluminium och tillgodogöra sig en del av kopparn som legeringsmetall genom smältning tillsammans med annat aluminiumskrot. I detta fall tyder resultaten på att metaller som litium och kobolt distribueras till en slaggfas eller avgår med gasen och hamnar i efterföljande rökgasrening. I den andra delen genomfördes grundläggande studier för att undersöka fördelning av kobolt och litium i kopparsmält system (Cu-Fe-S-O systemet). Baserat på resultat från termodynamiska beräkningar genomfördes ett antal försök i labskala för att studera fördelning av kobolt och litium mellan metall-, sulfid, -slagg, och gas under olika förhållanden. För att under kontrollerade förhållanden identifiera parametrar som påverkar fördelning blandades material med väl känd sammansättning. Litium och kobolt tillsattes i form av LiCoO2. Resultaten från studien visar att litium framförallt fördelas mellan slagg och gas, kobolt fördelas mellan metallfas och slaggfas. Under vissa förhållanden fördelades en stor del av litium till gas samtidigt som kobolt till stor del fördelades till en metallfas. Möjligheten att selektivt laka slaggen med avseende på litium med olika slaggsammansättning studerades i ett examensarbete. Resultaten gav ett relativt lågt utbyte av litium men justering av slaggsammansättning kan förbättra utbytet. Sammanfattningsvis tyder de resultat som erhållits inom detta projekt att aluminium från batterierna kan återvinnas genom smältning tillsammans med aluminiumskrot. För en effektiv återvinning av flertal metaller, inklusive Li från uttjänta Li-jon batterier bedöms att en kombination av olika metoder krävs, såsom; Förbehandling genom lågtemperaturbehandling för oskadliggörande av batteriet och mineraltekniska separationsmetoder följt av metallurgisk raffinering. För att erhålla en effektiv återvinning bedöms även att de restprodukter som genereras i olika steg behöver upparbetas.
  •  
12.
  • Wagner, Michelle, et al. (författare)
  • ORAMA Project - D2.3 Draft Good Practice Guidelines for the collection of SRM data, improvement potential, definition and execution of Case Studies
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This report is the result of Task 2.3 of the project ORAMA, corresponding to the third and final deliverable of Work Package (WP) 2. It combines previous tasks undertaken in WP2, which includes the first two deliverables, D2.1 and D2.2. In the first deliverable, an initial review and analysis of the current data collection practices for SRM across Europe from Member States reporting practices, previous and ongoing projects were formulated in a form of a structured inventory. In the second deliverable, an assessment and data gap analysis of the different data collection methods was done. In addition, recommendations and prioritization of strategies on how to improve and harmonize information in Member States (MS) were drawn. The recommendations provided in D2.2 were the bases for the formulation and implementation of each waste group’s case study which they will illustrate current deliverable. Furthermore, the case studies will provide the necessary information to create technical guidelines and training materials for WP4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12
Typ av publikation
rapport (7)
konferensbidrag (2)
tidskriftsartikel (2)
forskningsöversikt (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (8)
refereegranskat (4)
Författare/redaktör
Tivander, Johan, 197 ... (12)
Nordelöf, Anders, 19 ... (3)
Molander, Sverker, 1 ... (2)
Ljunggren Söderman, ... (2)
Tillman, Anne-Marie, ... (2)
Wagner, Michelle (2)
visa fler...
al., et (1)
Arvidsson, Rickard, ... (1)
Romare, Mia (1)
Hammar, Linus, 1979 (1)
Samuelsson, Caisa (1)
Chordia, Mudit, 1985 (1)
Horváth, Zoltán (1)
Hall, Björn (1)
Beheshti, Reza (1)
Bitencourt de Olivei ... (1)
Aune, Ragnhild (1)
Mattson, Martin (1)
Huisman, Jaco (1)
Mählitz, Paul (1)
Lövik, Amund N (1)
Leroy, Pascal (1)
Wäger, Patrick (1)
Emmerich, Johanna (1)
Tertre, Francois (1)
Cassard, Daniel (1)
Krewer, Christoffer (1)
Sigurdson, Tryggve (1)
Poulikidou, Sofia, 1 ... (1)
Hipkiss, Tim, 1973- (1)
Hossain, Muhammed No ... (1)
Treyer, Karin (1)
Lévová, Tereza (1)
Valsasina, Lucia (1)
Bavec, Špela (1)
Sperlich, Kristine (1)
Kaddoura, Mohamad, 1 ... (1)
Palander, Sara, 1986 (1)
Romare, Mia, 1988 (1)
Karheiding, Carl, 19 ... (1)
Petavratzi, Evi (1)
Bide, Tom (1)
Baldé, Cornelis Pete ... (1)
Schöjth, Frands (1)
Tivander, Johan (1)
Brown, Teresa (1)
Whitehead, David (1)
Nikolova, Violeta (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (12)
IVL Svenska Miljöinstitutet (1)
Språk
Engelska (9)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Teknik (10)
Naturvetenskap (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy