SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tunved P) srt2:(2015-2019)"

Sökning: WFRF:(Tunved P) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bisht, D. S., et al. (författare)
  • Tethered balloon-born and ground-based measurements. of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 573, s. 894-905
  • Tidskriftsartikel (refereegranskat)abstract
    • The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000 m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10 mu m (PM2.5 &PM-10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370 (nm), and BC880 nm were observed to be 146.8 +/- 42.1, 245.4 +/- 65.4, 30.3 +/- 122, and 24.1 +/- 103 mu g m(-3), respectively. The mean value of PM2.5 was similar to 12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370 nm) was-21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370 nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (sigma(ext)) value was much higher (mean: 610 Mm(-1)) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89 mu g m(-3)) and longer visible wavelength absorbing BC880 am (25.7 mu g m(-3)) particles were observed up to 200 m. The BC880 nm and PM2.5 aerosol concentrations near boundary layer (1 km) were significantly higher (similar to 1.9 and 12 mu g m(-3)), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were- 75.5 Wm(-2) at SFC indicating the cooling effect at the surface. A positive value (20.9 Wm(-2)) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4 Wm(-2)) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was -78% and-22%, respectively. The higher mean atmospheric heating rate (2.71 K clay(-1)) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India.
  •  
2.
  • Rao, P. S. P., et al. (författare)
  • Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 146, s. 90-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Samples of rainwater (RW) were collected to characterize the chemistry and sources in two representative megacities at Pune (Southwest) and Delhi (Northern) India from 2011 to 2014 across two seasons: monsoon (MN) and non-monsoon (NMN). Collected RW samples were analyzed for major chemical constituents (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Ca2+, and Mg2+), pH and conductivity. In addition, bicarbonate (HCO3-) was also estimated. The mean pH values of the RW were >6 at Pune and <6 at Delhi and 4% and 26% were acidic, respectively. The mean sum of all measured ionic species in Pune and Delhi was 304.7 and 536.4 mu ep/l, respectively, indicating that significant atmospheric pollution effects in these Indian mega cities. Both the Ca2+ and SO42- were the dominant ions, accounting for 43% (Pune) and 54% (Delhi) of the total ions. The sum of measured ions during the NMN period was greater than the NM period by a factor of 1.5 for Pune (278.4: NM and 412.1: NMN mu eq/l) and a factor of about 2.5 for Delhi (406 and 1037.7 mu eq/l). The contributions of SO42- and NO3- to the RW acidity were similar to 40% and 60%, respectively, at Pune and correspondingly, 36% and 64% at Delhi. The concentrations of secondary aerosols (SO42- and NO3-) were higher by a factor of two and three when the air masses were transported to Pune from the continental side. At Delhi, the concentrations of SO42-, NO3-, Ca2+, and Mg2+ were significantly higher when the air masses arrive from Punjab, Haryana, and Pakistan indicating the greater atmospheric pollution over the Indo-Gangetic Plain. Positive matrix factorization was applied to the source apportionment of the deposition fluxes of these ions. Three factors were obtained for Pune and four for Delhi. The sources at Pune were secondary aerosols from fossil fuel combustion, soil dust, and marine, whereas, at Delhi, the sources were soil, fossil fuel combustion, biomass burning, and industrial chlorine.
  •  
3.
  • Evangeliou, N., et al. (författare)
  • Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:12, s. 7587-7604
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory. During the 12-year period, an average area of 250aEuro-000aEuro-km(2)aEuro-yr(-1) was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5aEuro-TgaEuro-yr(-1) (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70aEuro-% originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102aEuro-+/- aEuro-29aEuro-ktaEuro-yr(-1) BC was deposited in the Arctic (defined here as the area north of 67A degrees aEuro-N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56aEuro-+/- aEuro-8aEuro-ktaEuro-yr(-1)). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37aEuro-% in 2009 (78 vs. 57aEuro-ktaEuro-yr(-1)) to 181aEuro-% in 2012 (153 vs. 54aEuro-ktaEuro-yr(-1)), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68aEuro-% of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85aEuro-% (79-91aEuro-%) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere. We estimate that about 46aEuro-% of the BC deposited over the Arctic from vegetation fires in northern Eurasia originated from Siberia, 6aEuro-% from Kazakhstan, 5aEuro-% from Europe, and about 1aEuro-% from Mongolia. The remaining 42aEuro-% originated from other areas in northern Eurasia. About 42aEuro-% of the BC released from northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17aEuro-%) during spring and summer.
  •  
4.
  • Sinha, P. R., et al. (författare)
  • Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites
  • 2017
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 122:6, s. 3544-3572
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term measurements of the light absorption coefficient (b(abs)) obtained with a particle soot absorption photometer (PSAP), b(abs) (PSAP), have been previously reported for Barrow, Alaska, and Ny-angstrom lesund, Spitsbergen, in the Arctic. However, the effects on b(abs) of other aerosol chemical species coexisting with black carbon (BC) have not been critically evaluated. Furthermore, different mass absorption cross section (MAC) values have been used to convert b(abs) to BC mass concentration (M-BC=b(abs)/MAC). We used a continuous soot monitoring system (COSMOS), which uses a heated inlet to remove volatile aerosol compounds, to measure b(abs) (b(abs) (COSMOS)) at these sites during 2012-2015. Field measurements and laboratory experiments have suggested that b(abs) (COSMOS) is affected by about 9% on average by sea-salt aerosols. M-BC values derived by COSMOS (M-BC (COSMOS)) using a MAC value obtained by our previous studies agreed to within 9% with elemental carbon concentrations at Barrow measured over 11months. b(abs) (PSAP) was higher than b(abs) (COSMOS), by 22% at Barrow (PM1) and by 43% at Ny-angstrom lesund (PM10), presumably due to the contribution of volatile aerosol species to b(abs) (PSAP). Using b(abs) (COSMOS) as a reference, we derived M-BC (PSAP) from b(abs) (PSAP) measured since 1998. We also established the seasonal variations of M-BC at these sites. Seasonally averaged M-BC (PSAP) decreased at a rate of about 0.550.30ngm(-3)yr(-1). We also compared M-BC (COSMOS) and scaled M-BC (PSAP) values with previously reported data and evaluated the degree of inconsistency in the previous data.
  •  
5.
  • Zieger, Paul, et al. (författare)
  • Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:13, s. 7247-7267
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH < 30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiala, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63 +/- 0.22 at RH = 85% and lambda = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiala to which f(RH) is clearly anti-correlated (R-2 approximate to 0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water uptake is found to be of minor importance for the column-averaged properties due to the low particle hygroscopicity and the low RH during the daytime of the summer months. The in situ derived aerosol optical depths (AOD) clearly correlate with directly measured values of the sun photometer but are substantially lower compared to the directly measured values (factor of similar to 2-3). The comparison degrades for longer wavelengths. The disagreement between in situ derived and directly measured AOD is hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers (above 3 km) from long-range transport were observed using an aerosol lidar at Kuopio, Finland, about 200 km east-northeast of Hyytiala. These elevated layers further explain parts of the disagreement.
  •  
6.
  • Nieminen, Tuomo, et al. (författare)
  • Global analysis of continental boundary layer new particle formation based on long-term measurements
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:19, s. 14737-14756
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10-25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March-May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01-10 cm(-3) s(-1)) and the growth rate by about an order of magnitude (1-10 nm h(-1)). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  •  
7.
  • Tiwari, Suresh, et al. (författare)
  • Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia : A rural environment over Indo-Gangetic Plain
  • 2016
  • Ingår i: Atmospheric research. - : Elsevier BV. - 0169-8095 .- 1873-2895. ; 178, s. 393-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (+/- 0.85) mu g m(-3) with a daily variability between 2.4 and 5.64 mu g m(-3), however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM1.0)] were 29.1(+/- 16.2), 34.7 (+/- 19.9) and 43.7 (+/- 283) mu g m(-3), respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 mu g m(-3)) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be +78.3, +44.9, and +45.0 W m(-2) and +42.2, +35.4 and +34.3 W m(-2) during the months ofJune, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21,1.26 and 1.26; and 1.19, 0.99 and 0.96 K day(-1) for the month ofJune, July and August, respectively, with a mean of 1.57 and 1.05 K day(-1) which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy