SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urban Joachim) srt2:(2015-2019)"

Sökning: WFRF:(Urban Joachim) > (2015-2019)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belavy, Daniel L, et al. (författare)
  • Disc herniations in astronauts: What causes them, and what does it tell us about herniation on earth?
  • 2016
  • Ingår i: European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. - : Springer Science and Business Media LLC. - 1432-0932. ; 25:1, s. 144-154
  • Forskningsöversikt (refereegranskat)abstract
    • Recent work showed an increased risk of cervical and lumbar intervertebral disc (IVD) herniations in astronauts. The European Space Agency asked the authors to advise on the underlying pathophysiology of this increased risk, to identify predisposing factors and possible interventions and to suggest research priorities.
  •  
2.
  • Bender, Stefan, et al. (författare)
  • Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4171-4195
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), and the Sub-Millimetre Radiometer (SMR). We use the daily zonal mean data in that altitude range for the years 2004–2010 (ACE-FTS), 2005–2012 (MIPAS), 2008–2012 (SCIAMACHY), and 2003–2012 (SMR).We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in the form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability.
  •  
3.
  • Christensen, Ole Martin, 1984, et al. (författare)
  • Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:5, s. 1981-1999
  • Tidskriftsartikel (refereegranskat)abstract
    • A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode was activated during June, July and August of 2010 and 2011, and for latitudes between 50 and 82 degrees N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75 and 90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.2 ppmv for water vapour and 2K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppmv) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 15 K) and water vapour (> 0.5 ppmv), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data is provided by OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits is considered. For these orbits, effects of PMCs on the water vapour distribution are clearly seen. Areas depleted of water vapour are found above layers with PMC, while regions of enhanced water vapour due to ice particle sedimentation are primarily placed between and under the clouds.
  •  
4.
  • Collaboration, The PANDA, et al. (författare)
  • Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
  • 2016
  • Ingår i: European Physical Journal A. - : Springer Publishing Company. - 1434-6001 .- 1434-601X. ; 52:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulation results for future measurements of electromagnetic proton form factors at P ¯ ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯ p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.p¯ p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
  •  
5.
  • Fytterer, Tilo, et al. (författare)
  • Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:6, s. 3327-3338
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements from 2002 to 2011 by three inde-pendent satellite instruments, namely MIPAS, SABER, andSMR on board the ENVISAT, TIMED, and Odin satellitesare used to investigate the intra-seasonal variability of strato-spheric and mesospheric O3 volume mixing ratio (vmr) in-side the Antarctic polar vortex due to solar and geomagneticactivity. In this study, we individually analysed the relativeO3 vmr variations between maximum and minimum condi-tions of a number of solar and geomagnetic indices (F10.7cm solar radio flux, Ap index, ≥2 MeV electron flux). Theindices are 26-day averages centred at 1 April, 1 May, and1 June while O3 is based on 26-day running means from1 April to 1 November at altitudes from 20 to 70 km. Dur-ing solar quiet time from 2005 to 2010, the composite ofall three instruments reveals an apparent negative O3 sig-nal associated to the geomagnetic activity (Ap index) around1 April, on average reaching amplitudes between −5 and−10 % of the respective O3 background. The O3 responseexceeds the significance level of 95 % and propagates down-wards throughout the polar winter from the stratopause downto ∼ 25 km. These observed results are in good qualitativeagreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes par-ticle impact ionisation.
  •  
6.
  • Hubert, D., et al. (författare)
  • Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:6, s. 2497-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40km the satellite ozone measurement biases are smaller than ±5%, the short-term variabilities are less than 5-12% and the drifts are at most ±5%decade-1 (or even ±3%decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
  •  
7.
  • Khosrawi, F., et al. (författare)
  • Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:1, s. 101-121
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (20002014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in water vapour and particular temperature the severe denitrification observed in 2010/11 cannot be directly related to any changes in water vapour and temperature since the millennium. However, the observations indicate a clear correlation between cold winters and enhanced water vapour mixing ratios. This indicates a connection between dynamical and radiative processes that govern water vapour and temperature in the Arctic lower stratosphere.
  •  
8.
  • Khosrawi, F., et al. (författare)
  • Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus GmbH. - 1680-7375 .- 1680-7367. ; 15:13, s. 17743-17796
  • Forskningsöversikt (refereegranskat)abstract
    • More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H 2 O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H 2 O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.
  •  
9.
  • Khosrawi, F., et al. (författare)
  • The SPARC water vapour assessment II: Comparison of stratospheric and lower mesospheric water vapour time series observed from satellites
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:7, s. 4435-4463
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°-70°S), the tropics (15°S-15°N) and the Northern Hemisphere mid-latitudes (50°-60°N) at four different altitudes (0.1, 3, 10 and 80hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986-2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
  •  
10.
  • Kirkwood, Stella, et al. (författare)
  • Ionization and NO production in the polar mesosphere during high-speed solar wind streams: model validation and comparison with NO enhancements observed by Odin-SMR
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:5, s. 561-572
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation of high-energy electrons (EEP) intothe polar middle atmosphere is a potential source of signif-icant production of odd nitrogen, which may play a role instratospheric ozone destruction and in perturbing large-scaleatmospheric circulation patterns. High-speed streams of so-lar wind (HSS) are a major source of energization and pre-cipitation of electrons from the Earth’s radiation belts, butit remains to be determined whether these electrons makea significant contribution to the odd-nitrogen budget in themiddle atmosphere when compared to production by solarprotons or by lower-energy (auroral) electrons at higher al-titudes, with subsequent downward transport. Satellite ob-servations of EEP are available, but their accuracy is notwell established. Studies of the ionization of the atmospherein response to EEP, in terms of cosmic-noise absorption(CNA), have indicated an unexplained seasonal variation inHSS-related effects and have suggested possible order-of-magnitude underestimates of the EEP fluxes by the satelliteobservations in some circumstances. Here we use a model ofionization by EEP coupled with an ion chemistry model toshow that published average EEP fluxes, during HSS events,from satellite measurements (Meredith et al., 2011), are fullyconsistent with the published average CNA response (Ka-vanagh et al., 2012). The seasonal variation of CNA responsecan be explained by ion chemistry with no need for any sea-sonal variation in EEP. Average EEP fluxes are used to esti-mate production rate profiles of nitric oxide between 60 and100 km heights over Antarctica for a series of unusually wellseparated HSS events in austral winter 2010. These are com-pared to observations of changes in nitric oxide during theevents, made by the sub-millimetre microwave radiometer onthe Odin spacecraft. The observations show strong increasesof nitric oxide amounts between 75 and 90 km heights, at alllatitudes poleward of 60 ◦ S, about 10 days after the arrival ofthe HSS. These are of the same order of magnitude but gen-erally larger than would be expected from direct productionby HSS-associated EEP, indicating that downward transportlikely contributes in addition to direct production.
  •  
11.
  • Lossow, Stefan, 1977, et al. (författare)
  • The SPARC water vapour assessment II: Profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
  • 2019
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:5, s. 2693-2732
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2 σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmv decade-1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.
  •  
12.
  • Plieninger, J., et al. (författare)
  • Validation of revised methane and nitrous oxide profiles from MIPAS-ENVISAT
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:2, s. 765-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved versions of CH4 and N2O profiles derived at the Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía (CSIC) from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have become available. For the MIPAS full-resolution period (2002-2004) these are V5H-CH4-21 and V5H-N2O-21 and for the reduced-resolution period (2005-2012) these are V5R-CH4-224, V5R-CH4-225, V5R-N2O-224 and V5R-N2O-225. Here, we compare CH4 profiles to those measured by the Fourier Transform Spectrometer on board of the Atmospheric Chemistry Experiment (ACE-FTS), the HALogen Occultation Experiment (HALOE) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY), to the Global Cooperative Air Sampling Network (GCASN) surface data. We find the MIPAS CH4 profiles below 25 km to be typically higher of the order of 0.1 ppmv for both measurement periods. N2O profiles are compared to those measured by ACE-FTS, the Microwave Limb Sounder on board of the Aura satellite (Aura-MLS) and the Sub-millimetre Radiometer on board of the Odin satellite (Odin-SMR) as well as to the Halocarbons and other Atmospheric Trace Species Group (HATS) surface data. The mixing ratios of the satellite instruments agree well with each other for the full-resolution period. For the reduced-resolution period, MIPAS produces similar values as Odin-SMR, but higher values than ACE-FTS and HATS. Below 27 km, the MIPAS profiles show higher mixing ratios than Aura-MLS, and lower values between 27 and 41 km. Cross-comparisons between the two MIPAS measurement periods show that they generally agree quite well, but, especially for CH4, the reduced-resolution period seems to produce slightly higher mixing ratios than the full-resolution data.
  •  
13.
  • Rahpoe, N., et al. (författare)
  • Relative drifts and biases between six ozone limb satellite measurements from the last decade
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4369-4381
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of European Space Agency's (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA's Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA's third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3 % decade-1 (1s). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere.
  •  
14.
  • Sheese, P. E., et al. (författare)
  • Validation of ACE-FTS version 3.5 NO y species profiles using correlative satellite measurements
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:12, s. 5781-5810
  • Tidskriftsartikel (refereegranskat)abstract
    • The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For
  •  
15.
  • Singh, B., et al. (författare)
  • Feasibility study for the measurement of pi N transition distribution amplitudes at (P)over-barANDA in (P)over-barp -> J/psi pi(0)
  • 2017
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 95:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is shown that the measurement can be done at (P) over bar ANDA with significant constraining power under the assumption of an integrated luminosity attainable in four to five months of data taking at the maximum design luminosity.
  •  
16.
  • Singh, B., et al. (författare)
  • Study of doubly strange systems using stored antiprotons
  • 2016
  • Ingår i: Nuclear Physics A. - : Elsevier. - 0375-9474 .- 1873-1554. ; 954, s. 323-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Xi(-) -atoms will be feasible and even the production of Omega(-) -atoms will be within reach. The latter might open the door to the vertical bar S vertical bar = 3 world in strangeness nuclear physics, by the study of the hadronic Omega(-) -nucleus interaction. For the first time it will be possible to study the behavior of Xi(+) in nuclear systems under well controlled conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy