SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Volpe D.D.)
 

Sökning: WFRF:(Volpe D.D.) > (2020-2021) > Intercellular commu...

Intercellular communication induces glycolytic synchronization waves between individually oscillating cells

Mojica Benavides, Martin, 1983 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU)
van Niekerk, D. D. (författare)
Mijalkov, M. (författare)
Karolinska Institutet
visa fler...
Snoep, J. L. (författare)
Mehlig, Bernhard, 1964 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU)
Volpe, Giovanni, 1979 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU)
Goksör, Mattias, 1975 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU)
Adiels, Caroline B., 1976 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för fysik (GU),Department of Physics (GU)
visa färre...
 (creator_code:org_t)
2021-02
2021
Engelska.
Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:6
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Many organs have internal structures with spatially differentiated and sometimes temporally synchronized groups of cells. The mechanisms leading to such differentiation and coordination are not well understood. Here we design a diffusion-limited microfluidic system to mimic a multicellular organ structure with peripheral blood flow and test whether a group of individually oscillating yeast cells could form subpopulations of spatially differentiated and temporally synchronized cells. Upon substrate addition, the dynamic response at single-cell level shows glycolytic oscillations, leading to wave fronts traveling through the monolayered population and to synchronized communities at well-defined positions in the cell chamber. A detailed mechanistic model with the architectural structure of the flow chamber incorporated successfully predicts the spatial-temporal experimental data, and allows for a molecular understanding of the observed phenomena. The intricate interplay of intracellular biochemical reaction networks leading to the oscillations, combined with intercellular communication via metabolic intermediates and fluid dynamics of the reaction chamber, is responsible for the generation of the subpopulations of synchronized cells. This mechanism, as analyzed from the model simulations, is experimentally tested using different concentrations of cyanide stress solutions. The results are reproducible and stable, despite cellular heterogeneity, and the spontaneous community development is reminiscent of a zoned cell differentiation often observed in multicellular organs.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

cell-cell communication
synchronization waves
glycolytic oscillations
insulin
acetaldehyde
populations
secretion
pyruvate
model
Science & Technology - Other Topics

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy