SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahren B) srt2:(2020-2024)"

Sökning: WFRF:(Wahren B) > (2020-2024)

  • Resultat 1-25 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khatri, B., et al. (författare)
  • Genome-wide association study identifies Sjogren's risk loci with functional implications in immune and glandular cells
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sjogren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjogren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands. The genetic architecture underlying Sjogren's syndrome is not fully understood. Here, the authors perform a genome-wide association study to identify 10 new genetic risk regions, implicating genes involved in immune and salivary gland function.
  •  
2.
  • Retamozo, S., et al. (författare)
  • Influence of the age at diagnosis in the disease expression of primary Sjogren's syndrome : Analysis of 12,753 patients from the Sjogren Big Data Consortium
  • 2021
  • Ingår i: Clinical and Experimental Rheumatology. - : CLINICAL & EXPER RHEUMATOLOGY. - 0392-856X .- 1593-098X. ; 39:6, s. S166-S174
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To analyse how the main components of the disease phenotype (sicca symptoms, diagnostic tests, immunological markers and systemic disease) can be driven by the age at diagnosis of primary Sjogren's syndrome (pSS).Methods. By January 2021, the participant centres had included 12,753 patients from 25 countries that fulfilled the 2002/2016 classification criteria for pSS. The age at diagnosis was defined as the time when the attending physician confirmed fulfilment of the criteria. Patients were clustered according to age at diagnosis. 50 clusters with more than 100 observations (from 27 to 76 years) were used to study the influence of the age at diagnosis in the disease expression.Results. There was a consistent increase in the frequency of oral dryness according to the age at diagnosis, with a frequency of <90% in patients diagnosed at the youngest ages and >95% in those diagnosed at the oldest ages. The smooth curves that best fitted a linear model were the frequency of dry mouth (adjusted R-2 0.87) and the frequency of abnormal oral tests (adjusted R-2 0.72). Therefore, for each 1-year increase in the age at diagnosis, the frequency of dry mouth increased by 0.13%, and the frequency of abnormal oral diagnostic tests by 0.11%. There was a consistent year-by-year decrease in the frequency of all autoantibodies and immunological markers except for cryoglobulins. According to the linear models, for each 1-year increase in the age at diagnosis, the frequency of a positive result decreased by 0.57% (for anti-Ro antibodies), 0.47% (for RF) and 0.42% (for anti-La antibodies). The ESSDAI domains which showed a more consistent decrease were glandular and lymph node involvement (for each 1-year increase in the age at diagnosis, the frequency of activity decreased by 0.18%), and constitutional, cutaneous, and haematological involvements (the frequency decreased by 0.09% for each 1-year increase). In contrast, other domains showed an ascending pattern, especially pulmonary involvement (for each 1-year increase in the age at diagnosis, the frequency of activity increased by 0.22%), and peripheral nerve involvement (the frequency increased by 0.09% for each 1-year increase).Conclusion. The influence of the age at diagnosis on the key phenotypic features of pSS is strong, and should be considered critical not only for designing a personalised diagnostic approach, but also to be carefully considered when analysing the results of diagnostic tests and immunological parameters, and when internal organ involvement is suspected at diagnosis.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Lundtoft, Christian, et al. (författare)
  • Strong Association of Combined Genetic Deficiencies in the Classical Complement Pathway With Risk of Systemic Lupus Erythematosus and Primary Sjogren's Syndrome
  • 2022
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 74:11, s. 1842-1850
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Complete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjogren's syndrome (SS) has not been studied systematically. This study was undertaken to investigate potential associations of heterozygous C2 deficiency and C4 copy number variation with clinical manifestations in patients with SLE and patients with primary SS. Methods The presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients who had received a diagnosis of SLE (n = 958) or primary SS (n = 911) and in 2,262 healthy controls through the use of DNA sequencing. The concentration of complement proteins in plasma and classical complement function were analyzed in a subgroup of SLE patients. Results Heterozygous C2 deficiency-when present in combination with a low C4A copy number-substantially increased the risk of SLE (odds ratio [OR] 10.2 [95% confidence interval (95% CI) 3.5-37.0]) and the risk of primary SS (OR 13.0 [95% CI 4.5-48.4]) when compared to individuals with 2 C4A copies and normal C2. For patients heterozygous for rs9332736 with 1 C4A copy, the median age at diagnosis was 7 years earlier in patients with SLE and 12 years earlier in patients with primary SS when compared to patients with normal C2. Reduced C2 levels in plasma (P = 2 x 10(-9)) and impaired function of the classical complement pathway (P = 0.03) were detected in SLE patients with heterozygous C2 deficiency. Finally, in a primary SS patient homozygous for C2 deficiency, we observed low levels of anti-Scl-70, which suggests a risk of developing systemic sclerosis or potential overlap between primary SS and other systemic autoimmune diseases. Conclusion We demonstrate that a genetic pattern involving partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and for primary SS. Our results emphasize the central role of the complement system in the pathogenesis of both SLE and primary SS.
  •  
12.
  •  
13.
  • Wiley, MM, et al. (författare)
  • FUNCTIONAL EVALUATION OF THE SJOGREN'S SYNDROME AND SYSTEMIC LUPUS ERYTHEMATOSUS DDX6-CXCR5 RISK INTERVAL
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 89-90
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjögren’s Syndrome (SS) and Systemic Lupus Erythematosus (SLE) are distinct chronic, complex autoimmune diseases with shared characteristics such as autoantibodies, heightened interferons, and polyarthritis. SS and SLE genome-wide association studies (GWAS) report strong associations with theDDX6-CXCR5risk interval. DDX6 suppresses interferon stimulated gene expression and CXCR5 regulates T cell functions implicated in autoimmunity.Objectives:To identify functional variants that impact regulation in theDDX6-CXCR5interval.Methods:Fine-mapping was done using ImmunoChip data from 3785 SLE, 1916 SS cases and 6893 population controls of European ancestry that were imputed and tested for SNP-trait association. Bayesian statistics assigned posterior probabilities to SNPs and defined a credible set of risk variants. Bioinformatic analyses further prioritized variants with predicted functionality. Electrophoretic mobility shift assays (EMSAs) and luciferase expression were used to validate predicted SNPs in EBV transformed B (EBV B) cells.Results:While some differences were observed, the overall SS and SLE association signals were similar. SNP-SS rs9736016 nearCXCR5and SNP-SLE rs76409436 nearDDX6were the most significant but did not show evidence of functionality. Bayesian statistics defined credible sets of variants in strong D’ in common between both SS and SLE. Bioinformatics analyses (Haploreg, RegulomeDB, ENCODE data, etc) further refined the credible set and identified 5 common SNPs with strong evidence of functionality in immune cell types: rs4938572, rs4936443, rs57494551, rs7117261 and rs4938573. EMSAs showed a significant increase in protein binding to the risk allele of rs57494551 (p=0.0001), rs7117261 (p=0.0001) and rs4938573 (p=0.0003), but not the others, using nuclear lysates from EBV B cells. Luciferase vectors with a minimal promoter or no promoter were used to test for enhancer or promoter activity, respectively. To this end, the rs57494551 risk allele exhibited a significant increase in enhancer activity (p=0.0001). In contrast, the rs7117261 risk allele decreased enhancer activity (p=0.018). The rs4938573 risk allele decreased enhancer (p=0.043) and promoter (p=0.024) activity. While rs7117261 or rs4938573 were not reported in eQTL databases, GTex data reported rs57494551 as an eQTL that altersDDX6expression in whole blood (p=1.8E-7). Additionally, these functional SNPs have been associated with looping events to several proximal promoters in nearby genes in immune cells.Conclusion:SS and SLE have similar genomic architecture across theDDX6-CXCR5risk interval. Multiple variants in the credible set exhibited allele specific changes in protein binding, as well as modified enhancer activity, promoter activity or both. Ongoing studies will use Cas9 in EBV B cells to determine which other loci are within the local regulatory network.Disclosure of Interests:Mandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Michelle L Joachims: None declared, Anna M Stolarczyk: None declared, Astrid Rasmussen Speakers bureau: Novartis, ThermoFischer, Simon J. Bowman Consultant of: Astrazeneca, Biogen, BMS, Celgene, Medimmune, MTPharma, Novartis, Ono, UCB, xtlbio, Glapagos, Speakers bureau: Novartis, Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James Grant/research support from: Progentec Diagnostics, Inc, Consultant of: Abbvie, Novartis, Jannsen, Lars Ronnblom Grant/research support from: AZ, Speakers bureau: AZ, R Hal Scofield Grant/research support from: Pfizer, Xavier Mariette: None declared, Wan-fai Ng: None declared, Kathy L Sivils: None declared, Gunnel Nordmark: None declared, Betty Tsao: None declared, Christopher Lessard: None declared
  •  
14.
  • Wiley, MM, et al. (författare)
  • SJOGREN'S DISEASE AND SYSTEMIC LUPUS ERYTHEMATOSUS DDX6-CXCR5 RISK INTERVALS REVEAL COMMON SNPS WITH FUNCTIONAL SIGNIFICANCE IN IMMUNE AND SALIVARY GLAND CELLS
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 269-270
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjögren’s Disease (SjD) and Systemic Lupus Erythematosus (SLE) are autoimmune diseases with several shared characteristics and similar genome-wide significant associations with the DDX6-CXCR5 locus. DDX6 suppresses interferon-stimulated gene expression and CXCR5 regulates T cell functions implicated in autoimmunity.ObjectivesTo identify and characterize functional SNPs in the DDX6-CXCR5 interval.MethodsImmunoChip data from European populations (3785 SLE cases; 1916 SjD cases; 6893 controls) were imputed and SNP-trait associations tested. Bayesian statistics defined a credible SNP set that was refined using bioinformatic analyses (RegulomeDB, Haploreg, ENCODE, promoter capture Hi-C, eQTLs, etc.). Electrophoretic mobility shift assays (EMSAs) and luciferase expression assays were used to test allele-specific SNP function in EBV-transformed B (EBV B) cells, Daudi B cells, Jurkat T cells, THP1 monocytes, and A253 salivary gland cell lines. Chromatin conformation capture with quantitative PCR (3C-qPCR) was used to assess long-range chromatin interactions.ResultsFine mapping of the SjD and SLE associations found similar SNP associations. Bioinformatic analyses identified 5 common SNPs with strong evidence of functionality in immune cell types: rs57494551 in an intron of DDX6, and rs4938572, rs4936443, rs7117261, and rs4938573 in the promoter/enhancer region of DDX6 and CXCR5. EMSAs and luciferase experiments showed cell type-specific differences in protein binding and promoter or enhancer activity, respectively, at each SNP. Risk allele of rs57494551 increased enhancer activity in B cells and A253 cells (p<0.001), but decreased promoter activity in T cells and A253 cells (p<0.01). SNP rs4938572 is an eQTL of DDX6 in T cells, and the risk allele significantly increased protein binding, promoter and enhancer activity in T cells (p<0.01). Risk allele of rs4938572 also increased promoter activity in A253 cells (p<0.001), but had no effect on promoter or enhancer activity in B cells. SNP rs4936443 showed no promoter or enhancer activity in immune cells, but the risk allele showed significant promoter and enhancer (p<0.001) activity in A253 cells. SNP rs7117261 showed decreased enhancer activity in EBV B cells, T cells, and A253 cells (p<0.05) and increased promoter activity in A253 cells (p<0.001). SNP rs4938573 showed decreased promoter activity in EBV B cells, T cell and A253 cells (p<0.05), decreased promoter activity in EBV B cells (p<0.05), and increased enhancer activity in A253 cells (p<0.0001). Overall, A253 cells exhibited more allele-specific effects on promoter and enhancer activity across the five SNPs compared to tested immune cells. In addition to DDX6 and CXCR5, rs57494551 and/or rs4938572 are reported eQTLs for several other genes of interest in the local chromatin regulatory network: IL10RA in T cells, TRAPPC4 in salivary gland and activated macrophages, and long non-coding (lnc)RNA AP002954.1 in T cells and whole blood. 3C-qPCR in EBV B and A253 cells showed that the two regulatory regions carrying rs4938572 or rs57494551 interacted with a region upstream of DDX6 that includes AP002954.1. Hi-C data showed looping between AP002954.1 and the regulatory region carrying rs4938572 and rs57494551 in T cells.ConclusionSjD and SLE share similar genomic architecture across the DDX6-CXCR5 risk interval with several common SNPs showing immune and salivary gland cell type-specific allelic effects on protein binding and/or enhancer/promoter activity. Extensive bioinformatic analyses suggest that the SNPs likely work within the local chromatin regulatory network to regulate cell type-specific expression of several genes on the interval. Ongoing studies will use 3C-qPCR to assess allele-specific chromatin interactions between the SNPs and these genes in different cells types, and CRISPR to determine how the risk alleles alters expression.Disclosure of InterestsMandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Michelle L Joachims: None declared, Anna M Stolarczyk: None declared, Anna Nagel: None declared, Astrid Rasmussen: None declared, Simon J. Bowman Consultant of: Abbvie, Galapagos, and Novartis in 2020-2021, Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James: None declared, Lars Ronnblom: None declared, R Hal Scofield: None declared, Xavier Mariette: None declared, Wan Fai Ng: None declared, Kathy Sivils Employee of: current employee of Janssen., Gunnel Nordmark: None declared, Betty Tsao: None declared, Christopher Lessard: None declared
  •  
15.
  • Aghakhanian, F, et al. (författare)
  • INTEGRATION OF GWAS AND EPIGENETIC STUDIES IDENTIFIES NOVEL GENES THAT ALTER EXPRESSION IN THE MINOR SALIVARY GLAND IN SJOGREN'S DISEASE
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 72-73
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjogren’s disease (SjD) is an autoimmune disease characterized by reduced function of exocrine glands (i.e., salivary and lacrimal glands). Epithelial cell damage resulting from lymphocytic infiltration has been implicated in SjD etiology [1]. How genetic and epigenetic changes influence epithelial-immune cell interactions in SjD pathogenesis remain understudied.ObjectivesEvaluate the role of SjD risk loci in salivary gland tissue to gain insights into the potential genes involved in salivary gland dysfunction.MethodsSNPs from 16 regions with SNP-SjD associations (P<5x10-8) in our GWAS study (3232 SjD cases) and meta-analysis of ImmunoChip data (619 SjD cases) [2] were interrogated for eQTLs using Genotype-Tissue Expression (GTEx) minor salivary gland data. Subsequent analysis identified genes that were both eQTLs in the minor salivary gland and significantly expressed in RNA-seq and ATAC-seq data from the submaxillary salivary gland epithelial cell line, A253. Pathway enrichment analysis was performed using gProfiler on the genes where coalescence of eQTL, RNA-seq, and ATAC-seq data was observed. To further validate the results, we performed transcriptome-wide association study (TWAS) analysis using GWAS summary statistics and minor salivary gland eQTL GTEx data.ResultsIn total, 5884 genome-wide significant SNPs from 16 SjD risk loci were identified as potential minor salivary gland eQTLs using two discovery thresholds: p(FDR)<0.05 provided by eQTL study (3566 SNPs) and p(FDR)>0.05 and p<0.05 in eQTL study (2318 SNPs). Further analysis revealed 10 SjD risk loci with SNPs that were minor salivary gland eQTLs for a total of 155 unique genes that had a coalescence of RNA- and ATAC-seq data in A253 cells. Many SNPs altered the expression of the nearest gene to the risk allele (i.e., index gene), such as IRF5 and TNPO3 on chromosome 7 at 128Mb; however, this locus had 12 additional genes that were eQTLs in minor salivary gland. In contrast, other loci had no reported eQTLs for the index gene, but several reported eQTLs for other genes, such TYK2 on chromosome 19 at 10Mb that showed no change in TYK2 expression but eQTLs for 8 distant genes, including ICAM1. Pathway enrichment analysis revealed an enrichment in Butyrophilin (BTN) family interactions (R-HSA-8851) (PAdj=1.564x10-5), including the BTN2A1, BTN2A2, BTN3A1, BTN3A2 and BTN3A3 gene cluster in the MHC region. In further support, TWAS of the minor salivary gland and the SjD GWAS summary statistics (after Bonferroni correction) showed association between SjD and BTN3A2 (p=1.24x10-42), as well as many other loci in the MHC region. In addition, several long non-coding (lnc) RNAs on chromosome 17 were significant, peaking at RP11-259G18.1 (p=4.43x10-10).ConclusionThis study shows that SjD-associated risk alleles influence disease by altering gene expression in immune cells and minor salivary glands. Further, our analysis suggests that altered gene expression in the minor salivary gland expands beyond effects on the index gene to several genes on each locus. Interestingly, we observed minor salivary gland eQTLs for several BTN family genes, which act as cell-surface binding partners to regulate cell-cell interactions, including interactions between epithelial cells and activated T cells [3]. Future work will assess chromatin-chromatin-interactions within the 10 SjD risk loci in salivary gland cells and tissues to map local chromatin regulatory networks that regulate gene expression. Additional transcriptional studies of SjD minor salivary gland tissues will provide further insights into how altered gene expression in the salivary gland influences SjD pathology.References[1]Verstappen. Nat Rev Rheumatol 2021;17(6):333-348.[2]Khatri, et al. Annals of Rheumatic Diseases 2020;79:30-31.[3]Arnett HA, Viney JL. Nature Reviews Immunology 2014;14:559-569.Disclosure of InterestsFarhang Aghakhanian: None declared, Mandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Astrid Rasmussen: None declared, Simon J. Bowman Consultant of: Abbvie, Galapagos, and Novartis in 2020-2021., Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James: None declared, Lars Ronnblom: None declared, R Hal Scofield: None declared, Xavier Mariette: None declared, Marta Alarcon-Riquelme: None declared, Wan Fai Ng: None declared, Kathy Sivils Employee of: Current employee of Janssen, Gunnel Nordmark: None declared, Umesh Deshmukh: None declared, A Darise Farris: None declared, Christopher Lessard: None declared
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Isaguliants, M, et al. (författare)
  • Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209–239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
  •  
20.
  • Joachim, A, et al. (författare)
  • Frequent and Durable Anti-HIV Envelope VIV2 IgG Responses Induced by HIV-1 DNA Priming and HIV-MVA Boosting in Healthy Tanzanian Volunteers
  • 2020
  • Ingår i: Vaccines. - : MDPI AG. - 2076-393X. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated antibody responses to the human immunodeficiency virus (HIV) envelope variable regions 1 and 2 (V1V2) in 29 vaccinees who had received three HIV-1 DNA immunizations and two HIV-modified vaccinia virus Ankara (MVA) boosts in the phase I/II HIVIS03 vaccine trial. Twenty vaccinees received a third HIV-MVA boost after three years in the HIVIS06 trial. IgG and IgG antibody subclasses to gp70V1V2 proteins of HIV-1 A244, CN54, Consensus C, and Case A2 were analysed using an enzyme-linked immunosorbent assay (ELISA). Cyclic V2 peptides of A244, Consensus C, and MN were used in a surface plasmon resonance (SPR) assay. Four weeks after the second HIV-MVA, anti-V1V2 IgG antibodies to A244 were detected in 97% of HIVIS03 vaccinees, in 75% three years later, and in 95% after the third HIV-MVA. Anti-CN54 V1V2 IgG was detectable in 48% four weeks after the second HIV-MVA. The SPR data supported the findings. The IgG response was predominantly IgG1. Four weeks after the second HIV-MVA, 85% of vaccinees had IgG1 antibodies to V1V2 A244, which persisted in 25% for three-years. IgG3 and IgG4 antibodies to V1V2 A244 were rare. In conclusion, the HIV-DNA/MVA vaccine regimen induced durable V1V2 IgG antibody responses in a high proportion of vaccinees.
  •  
21.
  •  
22.
  • Khatri, B, et al. (författare)
  • GENOME-WIDE ASSOCIATION STUDY OF SJOGREN'S SYNDROME IDENTIFIES TEN NEW RISK LOCI
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 30-31
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Sjögren’s syndrome (SS) is a complex autoimmune disease with exocrine gland dysfunction leading to substantial morbidity. There are 10 published genetic susceptibility loci.Objectives:Our genome-wide association study (GWAS) aimed to identify additional risk loci of genome-wide significance (GWS; p<5E-08) in European-derived primary SS.Methods:A total of 3232 cases and 17481 controls genotyped on GWAS arrays and 619 cases and 6171 controls genotyped on ImmunoChip (IC) arrays were imputed after quality control. Logistic regression was calculated adjusting for ancestry using the first 4 principal components to identify SS-associated SNPs. GWAS and IC results were meta-analyzed using weighted Z-scores. Bayesian statistics were used to assign posterior probabilities and define credible SNP sets for each locus. Bioinformatic analyses were used to predict functionality.Results:Seven novel loci exceeded GWS in the GWAS analysis:NAB1,MIR146A-PTTG1,XKR6,MAPT-CRHR1,RPTOR-CHMP6-BAIAP2,TYK2andSYNGR1. Meta-analysis with IC data identified three more novel loci exceeding GWS:CD247,PRDM1-ATG5andTNFAIP3. Several additional loci with suggestive association (p<1E-05) were also identified:ADAMTSL2,CGNL1andPHRF1.Several identified loci have reported functional implications in immune regulation and autoimmune disease. In lupus, rs2431697 correlated with rs2431098, which was shown to alterMIR146Aexpression, resulting in type I interferon pathway imbalance. Similarly,TYK2risk association reportedly drives interferon, IL10 and RET signaling pathways.PRDM1encodes Blimp-1, a master regulator of immune cell differentiation.CD247encodes the zeta subunit of the T cell receptor complex.XKR6is implicated in apoptotic cell ingestion.ATG5is also involved in apoptosis, as well as autophagy and antigen presentation.Additional bioinformatics analyses (Haploreg, Regulome DB, ENCODE, etc.) revealed immune-relevant functional implications for each risk locus. The SS-associated credible set included variants downstream ofTNFAIP3in a region reported to abolish looping between an enhancer and theTNFAIP3promoter in lupus and a coding variant that has been shown to alter NF-kB activity and neutrophil extra-cellular traps. The rs2293765 in the 5’ UTR ofNAB1showed evidence of enhancer/promoter activities. The rs2069235 in theSYNGR1locus showed enhancer and transcription start site activities in B and T cells. The rs7210219 in theMAPT-CRHR1locus showed enhancer/promotor activities in various tissues.Conclusion:We have identified ten novel genetic susceptibility loci associated with SS pathology. Our finding increases the current number of GWS regions in SS patients of European origin, from 10 to 20. Future work is needed to identify and characterize the functional variants in each region.Disclosure of Interests:Bhuwan Khatri: None declared, Tove Ragna Reksten: None declared, Kandice L Tessneer: None declared, Astrid Rasmussen Speakers bureau: Novartis, ThermoFischer, R Hal Scofield Grant/research support from: Pfizer, Simon J. Bowman Consultant of: Astrazeneca, Biogen, BMS, Celgene, Medimmune, MTPharma, Novartis, Ono, UCB, xtlbio, Glapagos, Speakers bureau: Novartis, Joel Guthridge Grant/research support from: Xencor, Bristol Myers Squibb, DXterity, Judith A. James Grant/research support from: Progentec Diagnostics, Inc, Consultant of: Abbvie, Novartis, Jannsen, Lars Ronnblom Grant/research support from: AZ, Speakers bureau: AZ, Blake M Warner: None declared, Xavier Mariette: None declared, Roald Omdal: None declared, Javier Martin Ibanez: None declared, Maria Teruel: None declared, Janicke Liaaen Jensen: None declared, Lara A Aqrawi: None declared, Øyvind Palm: None declared, Marie Wahren-Herlenius: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, A Darise Farris Speakers bureau: Biogen, Marta Alarcon-Riquelme: None declared, Wan-fai Ng: None declared, Kathy L Sivils: None declared, Gunnel Nordmark: None declared, Christopher Lessard: None declared
  •  
23.
  • Lundtoft, Christian, et al. (författare)
  • Complement C4 Copy Number Variation is Linked to SSA/Ro and SSB/La Autoantibodies in Systemic Inflammatory Autoimmune Diseases
  • 2022
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 74:8, s. 1440-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Copy number variation of the C4 complement components, C4A and C4B, has been associated with systemic inflammatory autoimmune diseases. This study was undertaken to investigate whether C4 copy number variation is connected to the autoimmune repertoire in systemic lupus erythematosus (SLE), primary Sjogrens syndrome (SS), or myositis. Methods Using targeted DNA sequencing, we determined the copy number and genetic variants of C4 in 2,290 well-characterized Scandinavian patients with SLE, primary SS, or myositis and 1,251 healthy controls. Results A prominent relationship was observed between C4A copy number and the presence of SSA/SSB autoantibodies, which was shared between the 3 diseases. The strongest association was detected in patients with autoantibodies against both SSA and SSB and 0 C4A copies when compared to healthy controls (odds ratio [OR] 18.0 [95% confidence interval (95% CI) 10.2-33.3]), whereas a weaker association was seen in patients without SSA/SSB autoantibodies (OR 3.1 [95% CI 1.7-5.5]). The copy number of C4 correlated positively with C4 plasma levels. Further, a common loss-of-function variant in C4A leading to reduced plasma C4 was more prevalent in SLE patients with a low copy number of C4A. Functionally, we showed that absence of C4A reduced the individuals capacity to deposit C4b on immune complexes. Conclusion We show that a low C4A copy number is more strongly associated with the autoantibody repertoire than with the clinically defined disease entities. These findings may have implications for understanding the etiopathogenetic mechanisms of systemic inflammatory autoimmune diseases and for patient stratification when taking the genetic profile into account.
  •  
24.
  • Msafiri, F, et al. (författare)
  • Frequent Anti-V1V2 Responses Induced by HIV-DNA Followed by HIV-MVA with or without CN54rgp140/GLA-AF in Healthy African Volunteers
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibody responses that correlated with reduced risk of HIV acquisition in the RV144 efficacy trial were assessed in healthy African volunteers who had been primed three times with HIV-DNA (subtype A, B, C) and then randomized into two groups; group 1 was boosted twice with HIV-MVA (CRF01_AE) and group 2 with the same HIV-MVA coadministered with subtype C envelope (Env) protein (CN54rgp140/GLA-AF). The fine specificity of plasma Env-specific antibody responses was mapped after the final vaccination using linear peptide microarray technology. Binding IgG antibodies to the V1V2 loop in CRF01_AE and subtype C Env and Env-specific IgA antibodies were determined using enzyme-linked immunosorbent assay. Functional antibody-dependent cellular cytotoxicity (ADCC)-mediating antibody responses were measured using luciferase assay. Mapping of linear epitopes within HIV-1 Env demonstrated strong targeting of the V1V2, V3, and the immunodominant region in gp41 in both groups, with additional recognition of two epitopes located in the C2 and C4 regions in group 2. A high frequency of V1V2-specific binding IgG antibody responses was detected to CRF01_AE (77%) and subtype C antigens (65%). In conclusion, coadministration of CN54rgp140/GLA-AF with HIV-MVA did not increase the frequency, breadth, or magnitude of anti-V1V2 responses or ADCC-mediating antibodies induced by boosting with HIV-MVA alone.
  •  
25.
  • Niewold, T, et al. (författare)
  • SKIN PROTEOME INVESTIGATION IN CUTANEOUS LUPUS ERYTHEMATOSUS (CLE) REVEALS NOVEL UNIQUE DISEASE PATHWAYS
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 335-335
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Cutaneous lupus erythematosus (CLE) is an autoimmune disease. It can be limited to the skin or be one of manifestations of systemic LE (SLE). The typical histopathologic pattern in CLE/SLE is interface dermatitis, which can also be observed in dermatomyositis (DM). While LE may affect any organ system, DM most commonly affect muscles and skin.Objectives:The aim of this study was to investigate the whole proteome of skin inflammatory foci in the cohort of CLE and DM patients in a comparatory, hypothesis-free manner and identify disease-unique molecular mechanisms.Methods:CLE (n=6), DM (n=5) patients and controls (n=6) were recruited at diagnosis or disease exacerbation. Skin biopsies were acquired, examined by a pathologist and selected inflammatory foci were laser micro-dissected. The total protein content was analyzed by mass-spectrometry, further analysis was performed by string-db.org platform. Certain proteomic findings were confirmed by immunohistochemistry (IHC).Results:CLE infiltrates were more protein rich in comparison to DM lesions. There ratio of 5x upregulated proteins in LE/DM was 60, while ratio for DM/LE was 13. Our results confirmed high abundance of (IFN)-regulated proteins both in CLE and DM, including: IFIT, MX and OAS families. Proteins expressed differentially in CLE covered complement proteins (C1b), including membrane attack complex (MAC) (C5, C6, C7, C8A and B) and complement regulators (CFHR1, CFHR2, CFHR5), as well as regulators of coagulation: thrombospondin 2 (THBS2), thrombin (F2), fibrinogen (F12) and annexin A3 (ANXA3). Importantly, we identified interleukin (IL) -16 as the only detectable and highly abundant cytokine in the CLE lesions and confirmed this finding by IHC.Conclusion:ConclusionsOur data confirm evidence on IFN-regulated processes in CLE/SLE. Importantly, we identified IL-16 as a novel cytokine most strongly upregulated locally in the skin lesions. Moreover, we identified activation of MAC, complement regulating proteins as well as involvement of coagulation/fibrinolysis system. The study brings information on novel pathways involved in the inflammatory foci of the skin lesions in CLE patients. Our findings are of interest in further search of new therapeutic targets.Disclosure of Interests: :Timothy Niewold: None declared, Karin Popovic-Silwerfeldt: None declared, Julia Lehman: None declared, Alexander Meves: None declared, Cristine Charlesworth: None declared, Benjamin Madden: None declared, Aliisa Hayry: None declared, Aleksandra Antovic: None declared, Ingrid E. Lundberg Grant/research support from: Bristol Meyer Squibb, Corbus Pharmaceuticals, Inc and Astra Zeneca, Marie Wahren-Herlenius: None declared, Elisabet Svenungsson: None declared, Vilija Oke: None declared
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy