SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Jianqi) "

Sökning: WFRF:(Yang Jianqi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elsik, Christine G., et al. (författare)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
2.
  • Feng, Guitao, et al. (författare)
  • “Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells
  • 2017
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 139:51, s. 18647-18656
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential pi-pi stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
  •  
3.
  • Liang, Hongyan, et al. (författare)
  • High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals
  • 2009
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 131:17, s. 6068-6068
  • Tidskriftsartikel (refereegranskat)abstract
    • High-yield uniform silver nanorices were synthesized by a facile polyol process without the introduction of shape-selected seeds. Nanorices exhibit two plasmon resonance peaks in the visible and near-infrared regions respectively due to their anisotropy. XRD patterns demonstrated the HCP phase coexists with the FCC phase in nanorices. The novel structure of nanorices was characterized by TEM study which shows that the intergrowth of FCC and a small amount of HCP phase, nanoscale FCC (111) twinning structure, and multimodulated structures formed by a complicated stacking sequence along the long axis direction. The correlation between morphology and microstructure is discussed.
  •  
4.
  • Min, Liu, et al. (författare)
  • Clinical efficacy of irinotecan plus raltitrexed chemotherapy in refractory esophageal squamous cell cancer
  • 2020
  • Ingår i: Anti-Cancer Drugs. - : LIPPINCOTT WILLIAMS & WILKINS. - 0959-4973 .- 1473-5741. ; 31:4, s. 403-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Our retrospective study assessed the efficacy and safety of irinotecan plus raltitrexed in esophageal squamous cell cancer (ESCC) patients who were previously treated with multiple systemic therapies. Between January 2016 and December 2018, records of 38 ESCC patients who underwent irinotecan plus raltitrexed chemotherapy after at least one line of chemotherapy were reviewed. Efficacy assessment was performed every two cycles according to the RECIST version 1.1. A total of 95 cycles of chemotherapy were administered, and the median course was 3 (range 2-6). There was no treatment-related death. Nine patients had partial response, 21 had stable disease and eight had progressive disease. The overall objective response rate was 23.68% (9/38) and the disease control rate was78.94% (30/38). After a median follow-up of 18.5 months, the median progression-free survival and overall survival were 105 and 221 days, respectively. There were five patients (13.15%) with grade 3/4 leukopenia, three patients (7.89%) with grade 3/4 neutropenia and one patient (2.63%) with grade 3/4 diarrhea. The combination of irinotecan plus raltitrexed was effective for pretreated ESCC patients. Further studies are needed to determine the optimal dose of the two drugs.
  •  
5.
  • Yang, Liu, et al. (författare)
  • Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide
  • 2015
  • Ingår i: Journal of Optics. - : Institute of Physics Publishing (IOPP). - 2040-8978 .- 2040-8986. ; 17:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold-silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2-1.6 mu m. Moreover, the Schottky contact is only 4 mu m long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration.
  •  
6.
  • Zhang, Yun, et al. (författare)
  • Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials
  • 2018
  • Ingår i: Science in China Series B. - : SCIENCE PRESS. - 1674-7291 .- 1869-1870. ; 61:10, s. 1328-1337
  • Tidskriftsartikel (refereegranskat)abstract
    • Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells (OSCs), both fluorine- and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies (PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors (PBDB-T-2F and PBDB-T-2Cl) and acceptors (IT-4F and IT-4Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%-14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.
  •  
7.
  • Zhou, Ruimin, et al. (författare)
  • All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy