SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yelle R.) srt2:(2010-2014)"

Sökning: WFRF:(Yelle R.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
2.
  • Cui, J., et al. (författare)
  • Ion transport in Titan's upper atmosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A06314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
  •  
3.
  • Vigren, E., et al. (författare)
  • INCREASING POSITIVE ION NUMBER DENSITIES BELOW THE PEAK OF ION-ELECTRON PAIR PRODUCTION IN TITAN'S IONOSPHERE
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 786:1, s. 69-
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anion neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.
  •  
4.
  • Vigren, E., et al. (författare)
  • On the thermal electron balance in Titan's sunlit upper atmosphere
  • 2013
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 223:1, s. 234-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini mission has investigated Titan's upper atmosphere in detail and found that, under solar irradiation, it has a well-developed ionosphere, which peaks between 1000 and 1200km. In this paper we focus on the T40, T41, T42 and T48 Titan flybys by the Cassini spacecraft and use in situ measurements of N2 and CH4 densities by the Ion Neutral Mass Spectrometer (INMS) as input into a solar energy deposition model to determine electron production rates. We combine these electron production rates with estimates of the effective recombination coefficient based on available laboratory data for Titan ions' dissociative recombination rates and electron temperatures derived from the Langmuir probe (LP) to predict electron number densities in Titan's upper atmosphere, assuming photochemical equilibrium and loss of electrons exclusively through dissociative recombination with molecular ions. We then compare these predicted electron number densities with those observed in Titan's upper atmosphere by the LP. The assumption of photochemical equilibrium is supported by a reasonable agreement between the altitudes where the electron densities are observed to peak and where the electron production rates are calculated to peak (roughly corresponding to the unit optical depth for HeII photons at 30.38nm). We find, however, that the predicted electron number densities are nearly a factor of two higher than those observed throughout the altitude range between 1050 and 1200km (where we have made estimates of the effective recombination coefficient). There are different possible reasons for this discrepancy; one possibility is that there may be important loss processes of free electrons other than dissociative recombination in Titan's upper atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy