SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zane Silvia) srt2:(2020-2024)"

Sökning: WFRF:(Zane Silvia) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Doroshenko, Victor, et al. (författare)
  • Complex variations in X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Imaging X-ray polarimetry explorer (IXPE) observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 made at two luminosity levels during the giant outburst in January- February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in supercritical and subcritical states with significantly different emission-region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase-resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on the pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations in the spin axis inclination, the position angle, and the magnetic colatitude by tens of degrees within the space of just a few days. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of an unpulsed polarized component in addition to the polarized radiation associated with the pulsar itself. We then show that the observed PA phase dependence in both observations can be explained with a single set of RVM parameters defining the pulsar s geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation in the equatorial disk wind.
  •  
2.
  • Kaaret, Philip, et al. (författare)
  • X-Ray Polarization of the Eastern Lobe of SS 433
  • 2024
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • How astrophysical systems translate the kinetic energy of bulk motion into the acceleration of particles to very high energies is a pressing question. SS 433 is a microquasar that emits TeV γ-rays indicating the presence of high-energy particles. A region of hard X-ray emission in the eastern lobe of SS 433 was recently identified as an acceleration site. We observed this region with the Imaging X-ray Polarimetry Explorer and measured a polarization degree in the range 38%-77%. The high polarization degree indicates the magnetic field has a well-ordered component if the X-rays are due to synchrotron emission. The polarization angle is in the range −12° to +10° (east of north), which indicates that the magnetic field is parallel to the jet. Magnetic fields parallel to the bulk flow have also been found in supernova remnants and the jets of powerful radio galaxies. This may be caused by interaction of the flow with the ambient medium.
  •  
3.
  • Krawczynski, Henric, et al. (författare)
  • Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 378:6620, s. 650-654
  • Tidskriftsartikel (refereegranskat)abstract
    • A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray-emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. These observations reveal that hot x-ray-emitting plasma is spatially extended in a plane perpendicular to, not parallel to, the jet axis.
  •  
4.
  • Saade, M. Lynne, et al. (författare)
  • X-Ray Polarimetry of the Dipping Accreting Neutron Star 4U 1624-49
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 963:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first X-ray polarimetric study of the dipping accreting neutron star 4U 1624−49 with the Imaging X-ray Polarimetry Explorer. We report a detection of polarization in the nondip time intervals with a confidence level of 99.99%. We find an average polarization degree (PD) of 3.1% ± 0.7% and a polarization angle of 81° ± 6° east of north in the 2–8 keV band. We report an upper limit on the PD of 22% during the X-ray dips with 95% confidence. The PD increases with energy, reaching from 3.0% ± 0.9% in the 4–6 keV band to 6% ± 2% in the 6–8 keV band. This indicates the polarization likely arises from Comptonization. The high PD observed is unlikely to be produced by Comptonization in the boundary layer or spreading layer alone. It can be produced by the addition of an extended geometrically thin slab corona covering part of the accretion disk, as assumed in previous models of dippers, and/or a reflection component from the accretion disk.
  •  
5.
  • Saade, M. Lynne, et al. (författare)
  • X-Ray Polarimetry of the Dipping Accreting Neutron Star 4U1624–49
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics. - 0004-637X .- 1538-4357. ; 963:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first X-ray polarimetric study of the dipping accreting neutron star 4U 1624−49 with the Imaging X-ray Polarimetry Explorer. We report a detection of polarization in the nondip time intervals with a confidence level of 99.99%. We find an average polarization degree (PD) of 3.1% ± 0.7% and a polarization angle of 81° ± 6° east of north in the 2–8 keV band. We report an upper limit on the PD of 22% during the X-ray dips with 95% confidence. The PD increases with energy, reaching from 3.0% ± 0.9% in the 4–6 keV band to 6% ± 2% in the 6–8 keV band. This indicates the polarization likely arises from Comptonization. The high PD observed is unlikely to be produced by Comptonization in the boundary layer or spreading layer alone. It can be produced by the addition of an extended geometrically thin slab corona covering part of the accretion disk, as assumed in previous models of dippers, and/or a reflection component from the accretion disk.
  •  
6.
  • Soffitta, Paolo, et al. (författare)
  • A polarized view of the hot and violent universe
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 51:3, s. 1109-1141
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray polarimetry has long been considered the 'holy grail' of X-ray astronomy. Fortunately, after a silence of more than 40 years, the field is now rejuvenating. In fact, an X-ray polarimeter onboard a Cube-sat nano-satellite has been recently successfully operated. IXPE, the Imaging X-ray Polarimetry Explorer, will be launched in 2021 while eXTP, containing a larger version of IXPE, is expected to be launched in 2027. Although at present it is difficult to predict the discoveries that, given their exploratory nature, IXPE and eXTP will obtain, the path for a follow-up mission can already be envisaged. In this paper we describe the scientific goals of such a follow-up mission, and present a medium-size mission profile that can accomplish this task.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy