SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Zhang Weihao)
 

Sökning: WFRF:(Zhang Weihao) > (2017) > Dominant flow struc...

Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance

Zou, Zhengping (författare)
Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Collaborat Innovat Ctr Adv Aeroengine, Sch Energy & Power Engn, Beijing 100191, Peoples R China.
Shao, Fei (författare)
Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Collaborat Innovat Ctr Adv Aeroengine, Sch Energy & Power Engn, Beijing 100191, Peoples R China.
Li, Yiran (författare)
Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Collaborat Innovat Ctr Adv Aeroengine, Sch Energy & Power Engn, Beijing 100191, Peoples R China.
visa fler...
Zhang, Weihao (författare)
Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Collaborat Innovat Ctr Adv Aeroengine, Sch Energy & Power Engn, Beijing 100191, Peoples R China.
Berglund, Albin (författare)
Uppsala universitet,Institutionen för teknikvetenskaper,Beihang Univ, Int Sch, Beijing 100191, Peoples R China
visa färre...
Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Collaborat Innovat Ctr Adv Aeroengine, Sch Energy & Power Engn, Beijing 100191, Peoples R China Institutionen för teknikvetenskaper (creator_code:org_t)
Elsevier BV, 2017
2017
Engelska.
Ingår i: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 138, s. 167-184
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Tip leakage loss reduction is important for improving the turbine aerodynamic performance. In this paper, the flow field of a transonic high pressure turbine stage with a squealer tip is numerically investigated. The physical mechanism of flow structures inside the cavity that control leakage loss is presented, which is obtained by analyzing the evolution of the flow structures and its influence on the leakage flow rate and momentum at the gap outlet. The impacts of the aerodynamic conditions and geometric parameters, such as blade loading distributions in the tip region, squealer heights, and gap heights, on leakage loss reduction are also discussed. The results show that the scraping vortex generated inside the cavity is the dominant flow structure affecting turbine aerodynamic performance. An aero-labyrinth liked sealing effect is formed by the scraping vortex, which increases the energy dissipation of the leakage flow inside the gap and reduces the equivalent flow area at the gap outlet. The discharge coefficient of the squealer tip is therefore decreased, and the tip leakage loss is reduced accordingly. Variations in the blade loading distribution in the tip region and the squealer geometry change the scraping vortex characteristics, such as the size, intensity, and its position inside the cavity, resulting in a different controlling effect on leakage loss. By reasonable blade tip loading distribution and squealer tip geometry for organizing scraping vortex characteristics, the squealer tip can improve the turbine aerodynamic performance effectively.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Nyckelord

Turbine
Squealer tip
Leakage flow
Scraping vortex
Flow structure

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

  • Energy (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Zou, Zhengping
Shao, Fei
Li, Yiran
Zhang, Weihao
Berglund, Albin
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Naturresurstekni ...
och Energisystem
Artiklar i publikationen
Energy
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy