SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Koning Tom J.) srt2:(2021)"

Search: WFRF:(de Koning Tom J.) > (2021)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Koens, Lisette H, et al. (author)
  • How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach
  • 2021
  • In: Parkinsonism & Related Disorders. - : Elsevier BV. - 1873-5126 .- 1353-8020. ; 85, s. 124-132
  • Research review (peer-reviewed)abstract
    • We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.
  •  
2.
  • Timmers, Elze R., et al. (author)
  • Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients
  • 2021
  • In: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 91, s. 48-54
  • Journal article (peer-reviewed)abstract
    • Introduction: In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. Methods: Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. Results: A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = −0.3, p < 0.01), depression (rs = −0.3, p < 0.01) and fatigue (rs = −0.2, p = 0.04). Conclusion: This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options.
  •  
3.
  • Gannamani, Rahul, et al. (author)
  • Challenges in Clinicogenetic Correlations : One Phenotype – Many Genes
  • 2021
  • In: Movement Disorders Clinical Practice. - : Wiley. - 2330-1619. ; 8:3, s. 311-321
  • Research review (peer-reviewed)abstract
    • Background: In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next-generation sequencing (NGS) has facilitated an exponential increase in disease-causing genes and genotype-phenotype correlations, and the "one-phenotype-many-genes" paradigm has become prominent.Objectives: To highlight the "one-phenotype-many-genes" paradigm by discussing the main challenges, perspectives on how to address them, and future directions.Methods: We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype.Results: The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up-to-date gene lists. Perspectives to address these include (1) deep phenotyping and genotype-phenotype integration, (2) adherence to phenotype-specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical-molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data.Conclusions: Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post-NGS phenotyping and cohort analyses enriched by genotype-phenotype integration and gene networks, ought to be pursued to accelerate identification of disease-causing genes and further improve our understanding of disease biology.
  •  
4.
  • Huang, Miaozhen, et al. (author)
  • Cross-disease analysis of depression, ataxia and dystonia highlights a role for synaptic plasticity and the cerebellum in the pathophysiology of these comorbid diseases
  • 2021
  • In: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439. ; 1867:1
  • Journal article (peer-reviewed)abstract
    • Background: There is growing evidence that the neuropsychiatric and neurological disorders depression, ataxia and dystonia share common biological pathways. We therefore aimed to increase our understanding of their shared pathophysiology by investigating their shared biological pathways and molecular networks. Methods: We constructed gene sets for depression, ataxia, and dystonia using the Human Phenotype Ontology database and genome-wide association studies, and identified shared genes between the three diseases. We then assessed shared genes in terms of functional enrichment, pathway analysis, molecular connectivity, expression profiles and brain-tissue-specific gene co-expression networks. Results: The 33 genes shared by depression, ataxia and dystonia are enriched in shared biological pathways and connected through molecular complexes in protein–protein interaction networks. Biological processes common/shared to all three diseases were identified across different brain tissues, highlighting roles for synaptic transmission, synaptic plasticity and nervous system development. The average expression of shared genes was significantly higher in the cerebellum compared to other brain regions, suggesting these genes have distinct cerebellar functions. Several shared genes also showed high expression in the cerebellum during prenatal stages, pointing to a functional role during development. Conclusions: The shared pathophysiology of depression, ataxia and dystonia seems to converge onto the cerebellum that maybe particularly vulnerable to changes in synaptic transmission, regulation of synaptic plasticity and nervous system development. Consequently, in addition to regulating motor coordination and motor function, the cerebellum may likely play a role in mood processing.
  •  
5.
  • Kok, Gautam, et al. (author)
  • Treatment of ARS deficiencies with specific amino acids
  • 2021
  • In: Genetics in Medicine. - : Elsevier BV. - 1098-3600. ; 23:11, s. 2202-2207
  • Journal article (peer-reviewed)abstract
    • Purpose: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase pathophysiological insight and improve therapeutic possibilities. Methods: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid concentrations, and developed personalized treatments. Results: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2–2 2/3rd years), and intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube feeding), head circumference, development, coping with infections, and oxygen dependency. Conclusion: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group. Moreover, we provide a strategy for personalized preclinical functional evaluation.
  •  
6.
  • van Verseveld, M, et al. (author)
  • Case Report: "Niemann-Pick Disease Type C in a Catatonic Patient Treated With Electroconvulsive Therapy"
  • 2021
  • In: Frontiers in Psychiatry. - : Frontiers Media SA. - 1664-0640. ; 12, s. 1-4
  • Journal article (peer-reviewed)abstract
    • We describe a case of an adolescent male with Niemann-Pick Type C (NP-C), a neurodegenerative lysosomal lipid storage disorder, who presented with recurrent catatonia which required repeated treatment with electroconvulsive therapy (ECT). During the ECT-course, seizure threshold increased substantially, leading to questions about the influence of NP-C on neuronal excitability. In this exemplary ECT-patient, NP-C was diagnosed not until after the first ECT-course when initial psychopharmacology for catatonia had failed and antipsychotics and benzodiazepines showed significant side-effects. Clinicians should be aware of NP-C in patients referred for ECT, especially in the case of treatment resistance, neurological symptoms and intolerance of psychopharmacological drugs. As was shown in our NP-C patient, ECT can be repeatedly effective for catatonic features. In the literature, effectiveness of ECT in patients with NP-C has sparsely been reported. This case demonstrates that detection of NP-C is beneficial for patients because more optimal treatment with ECT can be provided earlier without further exposure to side-effects.
  •  
7.
  • Castela Forte, José, et al. (author)
  • Development and Validation of Decision Rules Models to Stratify Coronary Artery Disease, Diabetes, and Hypertension Risk in Preventive Care : Cohort Study of Returning UK Biobank Participants
  • 2021
  • In: Journal of Personalized Medicine. - : MDPI AG. - 2075-4426. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Many predictive models exist that predict risk of common cardiometabolic conditions. However, a vast majority of these models do not include genetic risk scores and do not distinguish between clinical risk requiring medical or pharmacological interventions and pre-clinical risk, where lifestyle interventions could be first-choice therapy. In this study, we developed, validated, and compared the performance of three decision rule algorithms including biomarkers, physical measurements, and genetic risk scores for incident coronary artery disease (CAD), diabetes (T2D), and hypertension against commonly used clinical risk scores in 60,782 UK Biobank participants. The rules models were tested for an association with incident CAD, T2D, and hypertension, and hazard ratios (with 95% confidence interval) were calculated from survival models. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), and Net Reclassification Index (NRI). The higher risk group in the decision rules model had a 40-, 40.9-, and 21.6-fold increased risk of CAD, T2D, and hypertension, respectively (p < 0.001 for all). Risk increased significantly between the three strata for all three conditions (p < 0.05). Based on genetic risk alone, we identified not only a high-risk group, but also a group at elevated risk for all health conditions. These decision rule models comprising blood biomarkers, physical measurements, and polygenic risk scores moderately improve commonly used clinical risk scores at identifying individuals likely to benefit from lifestyle intervention for three of the most common lifestyle-related chronic health conditions. Their utility as part of digital data or digital therapeutics platforms to support the implementation of lifestyle interventions in preventive and primary care should be further validated.
  •  
8.
  • Mainka, Tina, et al. (author)
  • The neurological and neuropsychiatric spectrum of adults with late-treated phenylketonuria
  • 2021
  • In: Parkinsonism and Related Disorders. - : Elsevier BV. - 1353-8020. ; 89, s. 167-175
  • Journal article (peer-reviewed)abstract
    • Introduction: Phenylketonuria (PKU) is a rare, treatable inborn error of metabolism with frequent neurological and neuropsychiatric complications, especially in undiagnosed or insufficiently treated individuals. Given the wide range of clinical presentations and the importance of treatment implications, we here delineate the neurological and neuropsychiatric symptom spectrum in a large cohort of previously unreported adults with late-treated PKU. Methods: We consecutively evaluated late-treated PKU cases and pooled clinical and paraclinical data, including video-material, from three centers with expertise in complex movement disorders, inborn errors of metabolism and pediatrics. Results: 26 individuals were included (10 females, median age 52 years). Developmental delay and intellectual disability were omnipresent with severe impairment of expressive communication noted in 50% of cases. Movement disorders were prevalent (77%), including tremor (38%, mostly postural), stereotypies (38%), and tics (19%). One case had neurodegenerative levodopa-responsive parkinsonism. Mild ataxia was noted in 54% of cases and 31% had a history of seizures. Neuropsychiatric characteristics included obsessive-compulsive (35%) and self-injurious behaviors (31%), anxiety (27%), depression (19%) and features compatible with those observed in individuals with autism spectrum disorder (19%). Neuroimaging revealed mild white matter changes. Adherence to dietary treatment was inconsistent in the majority of cases, particularly throughout adolescence. Conclusion: A history of movement disorders, particularly tremor, stereotypies and tics, in the presence of developmental delay, intellectual disability and neuropsychiatric features, such as obsessive-compulsive and self-injurious behaviors in adults should prompt the diagnostic consideration of PKU. Initiation and adherence to (dietary) treatment can ameliorate the severity of these symptoms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view