SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Industrial Biotechnology) hsv:(Bio Materials) srt2:(2015-2019)"

Sökning: hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Industrial Biotechnology) hsv:(Bio Materials) > (2015-2019)

  • Resultat 1-25 av 282
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Molecular docking and linear interaction energy studies give insight to α, β-reduction of enoate groups in enzymes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Production of adipic acid from renewable sources has been gaining attention in an attempt to move from an oil-based economy to a biobased economy. Metabolic engineering allows microorganisms to produce useful chemicals using renewable resources as carbon sources. We target a theoretical metabolic pathway that relies on conversion of L-lysine to adipic acid. One of the enzymatic steps in this conversion pathway is an α, β-reduction of an unsaturated bond in an enoate moiety and no aerobic enzymes have been identified to specifically make this conversion on 6-amino-trans-2-hexenoic acid. We evaluated Escherichia coli NemA, and Saccharomyces pastorianus Oye1 (Old Yellow Enzyme 1) for their potenstial capability to carry out the desired α, β-reduction. Here, we build homology models for E. coli NemA and perform molecular docking studies of trans-2-hexenoic acid and trans-2-hexenal to the candidate enzyme models. Ligand-enzyme binding stability is assessed by molecular dynamics (MD) simulations. Additionally, linear energy calculations were used to investigate binding stability in solution environment. Here, we propose that NemA and Oye1, both belonging to the Old yellow enzyme family, have large enough catalytic pocket for accommodating enoate moieties but not enough stability to carry out the α, β-reduction. Protein engineering of both NemA and Oye1 would be necessary for these enzymes to perform the targeted reactions efficiently. The results shown in this study provides a useful insight to α, β-reduction reaction potentially crucial in bio-based production of adipic acid.
  •  
3.
  • Jansson, Ronnie, et al. (författare)
  • Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris
  • 2016
  • Ingår i: Biotechnology Journal. - : Wiley-VCH Verlagsgesellschaft. - 1860-6768 .- 1860-7314. ; 11:5, s. 687-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation.
  •  
4.
  • Gontia, Paul, 1984, et al. (författare)
  • Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: Case study of thermo-mechanical and sulfite pulp mills
  • 2016
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 131, s. 475-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium polyacrylate (Na-PA) is a super absorbent polymer, which is commonly used in diverse hygiene products. The polymer is currently produced from fossil feedstock and its production consequently leads to adverse environmental impacts. Na-PA production from sugars present in pulp mill side streams can potentially be a successful way to achieve a more sustainable production of this polymer. In order to guide the development of a novel biochemical process for producing Na-PA, a life cycle assessment was done in which Na-PA produced from side streams of thermo-mechanical pulp (TMP) and sulfite pulp mills were compared. Furthermore, a comparison was made with Na-PA produced from fossil resources. The results show that the main determinant of the environmental impact of the bio-based Na-PA production is the free sugar content in the side streams. The lowest environmental impact is achieved by the least diluted side streams. More diluted side streams require larger amounts of energy for concentration, and, if the diluted streams are not concentrated, processes such as hydrolysis and detoxification, and fermentation are the environmental hotspots. Furthermore, the higher the yield of the fermentation process, the lower the environmental impact will be. Lastly, the production of bio-based Na-PA led to a lower global warming potential for some of the considered pulp mill side streams, but all of the other impacts considered were higher, when compared to fossil-based Na-PA production. Therefore, in parallel with efforts to develop a high-yield yeast for the fermentation process, technology developers should focus on low energy concentration processes for the side streams.
  •  
5.
  • Karlsson, Emma, 1983, et al. (författare)
  • In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocel-lulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them.
  •  
6.
  • Pajalic, Oleg, 1964 (författare)
  • BIOCHEMICALS, BIOMATERIALS, AND BIOINNOVATIONS – WHAT CAN WE GET FROM BIOMASS
  • 2015
  • Ingår i: 4th SCIENTIFIC SYMPOSIUM WITH INTERNATIONAL PARTICIPATION Environmental resources, sustainable development and food production OPORPH – 2015 Tuzla, Bosnia and Herzegovina November 12-13, 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Environmental changes and oil price has triggered an increased interest in bio-based energy, chemicals and materials in the last decades. Thou the oil price have been dropped recently due to new findings, the transformation towards bio-based economy will continue. EU has pumped hundred millions of EURO in sustainability related research and innovation projects. Sweden has followed the pattern and has been pushed towards the green economy by establishing the vision to create and develop a bio-based economy in the first half of the twenty-first century. Sweden is rich with non-edible bio-mass i.e. forest. Traditionally the forest was used in pulp and paper industry, but digitalization boom requires paradigm shift. Green materials and green chemicals were identified as a big potential. Ambitious research was started supported by Swedish government and industry. Some of the industrial initiatives are:-The new research agenda, NRA 2020, is the collective assessment of Swedish forest-based industries regarding research, development and demonstration, which is necessary for the sector to be able to contribute to achieving. - Chemical cluster in Western Sweden started an initiative called Sustainable Chemistry 2030 with the vision that their business will be based on renewable feedstock and energy and contribute to sustainable society.
  •  
7.
  •  
8.
  •  
9.
  • Agar, David, et al. (författare)
  • A systematic study of ring-die pellet production from forest and agricultural biomass
  • 2018
  • Ingår i: Fuel Processing Technology. - : Elsevier BV. - 0378-3820 .- 1873-7188. ; 180, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous global growth in the pellet production industry and renewable energy policy targets have driven interest in under-utilised lignocellulosic biomass. In this comprehensive study, pelleting trials were systematically carried out using a pilot-scale ring-die pellet press with eight different biomass feedstock; logging residues, pine bark, wheat straw, reed canary grass, coppiced willow, poplar and beech. A standard spruce/pine sawdust blend was pelleted as a reference material.Pellets were produced from feedstock at four different moisture content levels, through two press channel lengths and three replicate steady-state sampling periods. A total of 192 batches of 8 mm diameter pellets were produced within a press channel length and moisture content range of 30-60 mm and 9-17% respectively. Pellet production had a range of 141-206 kg h(-1) and relatively good pellet quality was achieved for a majority of the studied feedstock. The best pellet batches had a mechanical durability and bulk density range of 91-99% and 532-714 kg m(-3) respectively, corresponding to an energy density range of 8.3-12.5 GJ m(-3) (as received). The extruded pellet temperature ranged between 99 and 131 degrees C and was correlated to pellet bulk density for hardwoods, pine bark and forest residues. The normalised energy (reference value of 1) used in pelleting all materials varied between 0.76 and 1.3 being highest for the hardwoods and lowest for straw and forest residues.
  •  
10.
  • Andersson, Johanna, 1984, et al. (författare)
  • Stick–slip motion and controlled filling speed by the geometric design of soft micro-channels
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 524, s. 139-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis Liquid can move by capillary action through interconnected porous materials, as in fabric or paper towels. Today mass transport is controlled by chemical modification. It is, however, possible to direct mass transport by geometrical modifications. It is here proposed that it is possible to tailor capillary flow speed in a model system of micro-channels by the angle, size and position of attached side channels. Experiments A flexible, rapid, and cost-effective method is used to produce micro-channels in gels. It involves 3D-printed moulds in which gels are cast. Open channels of micrometre size with several side channels on either one or two sides are produced with tilting angles of 10 – 170°. On a horizontal plane the meniscus of water driven by surface tension is tracked in the main channel. Findings The presence of side channels on one side slowed down the speed of the meniscus in the main channel least. Channels having side channels on both sides with tilting angles of up to 30° indicated tremendously slower flow, and the liquid exhibited a stick-slip motion. Broader side channels decreased the speed more than thinner ones, as suggested by the hypothesis. Inertial forces are suggested to be important in branched channel systems studied here.
  •  
11.
  • De La Fuente, Teresa, et al. (författare)
  • Life cycle assessment of decentralized mobile production systems for pelletizing logging residues under Nordic conditions
  • 2018
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 201, s. 830-841
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of mobile systems for the decentralized pelletizing of forest-based residual biomass is currently underway. However, there is a lack of knowledge regarding the environmental impacts of such systems that needs to be developed for correct judgements on the most sustainable developing paths. The objective of this study was to quantify and compare the environmental impacts of a decentralized mobile production system for pelletizing logging residues in Northern Sweden operating at either the forest landing or forest terminal from a Life Cycle Assessment (LCA) perspective.The results showed that the landing- and terminal-based scenarios showed similar environmental profiles. The pelleting, transportation and drying stages of both scenarios were identified as environmental hotspots. These production stages accounted for 62%, 14% and 14% of the total greenhouse gas emissions, respectively. Key factors influencing the system were the use of electricity at terminals, the increase in pelletizer capacity, and long transportation distances. The use of a Swedish electricity mix instead of diesel based electricity in the terminal-based scenario reduced all of the environmental impacts by between 68% and 83%, with the exception of fresh water eutrophication potential, which increased by 26%.In conclusion, our findings indicate that an electrified mobile pellet production system with high operational efficiency and situated at a terminal close to the harvesting sites could, from an LCA point of view, be an interesting option for pelletizing Nordic logging residues, especially in regions with long transportation distances to industry. (C) 2018 Elsevier Ltd. All rights reserved.
  •  
12.
  • Fjellgaard Mikalsen, Ragni (författare)
  • Fighting flameless fires : Initiating and extinguishing self-sustainedsmoldering fires in wood pellets
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Smoldering fires represent domestic, environmental and industrial hazards. This flameless form of combustion is more easily initiated than flaming, and is also more persistent and difficult to extinguish. The growing demand for non-fossil fuels has increased the use of solid biofuels such as biomass. This represents a safety challenge, as biomass self-ignition can cause smoldering fires, flaming fires or explosions.Smoldering and extinguishment in granular biomass was studied experimentally. The set-up consisted of a cylindrical fuel container of steel with thermally insulated side walls. The container was closed at the bottom, open at the top and heated from below by a hot surface. Two types of wood pellets were used as fuel, with 0.75-1.5 kg samples.Logistic regression was used to determine the transition region between non-smoldering and self-sustained smoldering experiments, and to determine the influence of parameters. Duration of external heating was most important for initiation of smoldering. Sample height was also significant, while the type of wood pellet was near-significant and fuel container height was not.The susceptibility of smoldering to changes in air supply was studied. With a small gap at the bottom of the fuel bed, the increased air flow in the same direction as the initial smoldering front (forward air flow) caused a significantly more intense combustion compared to the normal set-up with opposed air flow.Heat extraction from the combustion was studied using a water-cooled copper pipe. Challenges with direct fuel-water contact (fuel swelling, water channeling and runoff) were thus avoided. Smoldering was extinguished in 7 of 15 cases where heat extraction was in the same range as the heat production from combustion. This is the first experimental proof-of-concept of cooling as an extinguishment method for smoldering fires.Marginal differences in heating and cooling separated smoldering from extinguished cases; the fuel bed was at a heating-cooling balance point. Lower cooling levels did not lead to extinguishment, but cooling caused more predictable smoldering, possibly delaying the most intense combustion. Also observed at the balance point were pulsating temperatures; a form of long-lived (hours), macroscopic synchronization not previously observed in smoldering fires.For practical applications, cooling could be feasible for prevention of temperature escalation from self-heating in industrial storage units. This study provides a first step towards improved fuel storage safety for biomass. 
  •  
13.
  •  
14.
  • Hao, Nanjing, et al. (författare)
  • Glyconanomaterials for biosensing applications
  • 2016
  • Ingår i: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 76:15, s. 113-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
  •  
15.
  •  
16.
  •  
17.
  • Apelgren, Peter, et al. (författare)
  • Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.
  • 2017
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
  •  
18.
  • Apelgren, Peter, et al. (författare)
  • In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink
  • 2019
  • Ingår i: Acs Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 5:5, s. 2482-2490
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 X 5 X 1 mm(3)) containing human nasal chondrocytes (10 M mL(-1)) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 +/- 13.8 cells per mm(2) observed after 30 days and 85.6 +/- 30.0 cells per mm(2) at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.
  •  
19.
  • Chudinova, Ekaterina, et al. (författare)
  • Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596.
  • Konferensbidrag (refereegranskat)abstract
    • Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds.
  •  
20.
  • Chudinova, Ekaterina, et al. (författare)
  • In Vitro Assessment of Hydroxyapatite Coating on the Surface of Additive Manufactured Ti6Al4V Scaffolds
  • 2017
  • Ingår i: Materials Science Forum. - Switzerland : Trans Tech Publications Inc.. - 0255-5476 .- 1662-9752. ; 879, s. 2444-2449
  • Tidskriftsartikel (refereegranskat)abstract
    • Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.
  •  
21.
  • Jocic, Simonne, et al. (författare)
  • Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices
  • 2017
  • Ingår i: Materials Science and Engineering C. - : Elsevier BV. - 0928-4931 .- 1873-0191. ; 76, s. 1175-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a straightforward technique for fabricating user-friendly and biomimetic microfluidic devices out of a gelatin/agar gel cross-linked with 1,1′-carbonyldiimidazole. The fabrication procedure requires only inexpensive starting materials such as glass capillaries and wires to mold 3D cylindrical channels into the gel with the possibility of achieving channel diameters of 375 μm and 1000 μm. We demonstrate that the channel absent of gel injury can retain fluid within its dimensions for at least 7 h. We also show that the device material does not autofluoresce nor provide hindrances with fluorescent imaging. A discussion of the chemical linkage identities of cross-linked gelatin/agar is included via ATR-FTIR studies. Crosslinking of the gelatin/agar is further confirmed by the lack of a gel to sol transition at physiological temperature as assessed by DSC measurements. SEM micrographs that demonstrate the 100 nm mean pore width of the cross-linked gelatin/agar are provided. This device is considered biomimetic because it represents components present in the natural extracellular matrix such as collagen and proteoglycans in the form of cross-linked gelatin/agar.
  •  
22.
  •  
23.
  • Martinez Avila, Hector, 1985 (författare)
  • Biofabrication, Biomechanics and Biocompatibility of Nanocellulose-based Scaffolds for Auricular Cartilage Regeneration
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In about 2:10,000 births the external part of the ear, the auricle, is severely malformed or absent. Furthermore, tumors and trauma can cause defects to the auricle. For patients with dysplasia of the auricle, and especially for children, an inconspicuous outer appearance with life-like auricles is important for their psychological and emotional well being as well as their psycho-social development. Auricular reconstruction remains a great challenge due to the complexity of surgical reconstruction using rib cartilage. Despite the advances in stem cell technology and biomaterials, auricular cartilage tissue engineering (TE) is still in an early stage of development due to critical requirements demanding appropriate mechanical properties and shape stability of the tissue-engineered construct. This thesis has focused on developing patient-specific tissue-engineered auricles for one-step surgery using a novel biomaterial, bacterial nanocellulose (BNC), seeded with human nasoseptal chondrocytes (hNC) and bone marrow mononuclear cells (MNC).Biomechanical properties of human auricle cartilage were measured and used as a benchmark for tuning BNC properties. In order to meet the biomechanical requirements, a scaffold with bilayer architecture composed of a dense BNC support layer and a macroporous structure was designed. Firstly, the biocompatibility of the dense BNC layer was investigated, demonstrating a minimal foreign body response according to standards set forth in ISO 10993. Secondly, different methods to create macroporous BNC scaffolds were studied and the redifferentiation capacity of hNCs was evaluated in vitro; revealing that macroporous BNC scaffolds support cell ingrowth, proliferation and neocartilage formation. The bilayer BNC scaffold was biofabricated and tested for endotoxins and cytotoxicity before evaluating in long-term 3D culture, and subsequently in vivo for eight weeks—in an immunocompromised animal model. The results demonstrated that the non-pyrogenic and non- cytotoxic bilayer BNC scaffold offers a good mechanical stability and maintains a structural integrity, while providing a porous 3D environment that is suitable for hNCs and MNCs to produce neocartilage, in vitro and in vivo. Furthermore, patient-specific auricular BNC scaffolds with bilayer architecture were biofabricated and seeded with autologous rabbit auricular chondrocytes (rAC) for implantation in an immunocompetent rabbit model for six weeks. The results demonstrated the shape stability of the rAC-seeded scaffolds and neocartilage depositions in the immunocompetent autologous grafts. 3D bioprinting was also evaluated for biofabrication of patient-specific, chondrocyte-laden auricular constructs using a bioink composed of nanofibrillated cellulose and alginate. Bioprinted auricular constructs showed an excellent shape and size stability after in vitro culture. Moreover, this bioink supports redifferentiation of hNCs while offering excellent printability, making this a promising approach for auricular cartilage TE. Furthermore, the use of bioreactors is essential for the development of tissue-engineered cartilage in vitro. Thus, a compression bioreactor was utilized to apply dynamic mechanical stimulation to cell-seeded constructs as a means to enhance production of extracellular matrix in vitro.In this work, a potential clinical therapy for auricular reconstruction using tissue-engineered auricles is demonstrated; where BNC is proposed as a promising non-degradable biomaterial with good chemical and mechanical stability for auricular cartilage TE. Although the primary focus of this thesis is on auricular reconstruction, the methods developed are also applicable in the regeneration of other cartilage tissues such as those found in the nose, trachea, spine and articular joints.
  •  
24.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results: Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His 6 -Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H 36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions:Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources.
  •  
25.
  • Sämfors, Sanna, 1987, et al. (författare)
  • Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure
  • 2019
  • Ingår i: Biofabrication. - : IOP Publishing. - 1758-5082 .- 1758-5090. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial nanocellulose (BNC) has proven to be an effective hydrogel-like material for different tissue engineering applications due to its biocompatibility and good mechanical properties. However, as for all biomaterials, in vitro biosynthesis of large tissue constructs remains challenging due to insufficient oxygen and nutrient transport in engineered scaffold-cell matrices. In this study we designed, biofabricated and evaluated bacterial nanocellulose scaffolds with a complex vascular mimetic lumen structure. As a first step a method for creating straight channeled structures within a bacterial nanocellulose scaffold was developed and evaluated by culturing of Human Umbilical Vein Endothelial Cells (HUVECs). In a second step, more complex structures within the scaffolds were produced utilizing a 3D printer. A print mimicking a vascular tree acted as a sacrificial template to produce a network within the nanoporous bacterial nanocellulose scaffolds that could be lined with endothelial cells. In a last step, a method to produce large constructs with interconnected macro porosity and vascular like lumen structure was developed. In this process patient data from x-ray computed tomography scans was used to create a mold for casting a full-sized kidney construct. By showing that the 3D printing technology can be combined with BNC biosynthesis we hope to widen the opportunities of 3D printing, while also enabling the production of BNC scaffolds constructs with tailored vascular architectures and properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 282
Typ av publikation
tidskriftsartikel (185)
konferensbidrag (64)
doktorsavhandling (14)
bokkapitel (8)
annan publikation (3)
forskningsöversikt (3)
visa fler...
licentiatavhandling (2)
rapport (1)
bok (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (231)
övrigt vetenskapligt/konstnärligt (49)
populärvet., debatt m.m. (2)
Författare/redaktör
Oksman, Kristiina (78)
Mathew, Aji P. (47)
Oksman, Kristiina, 1 ... (34)
Geng, Shiyu (21)
Berglund, Linn (17)
Aitomäki, Yvonne (16)
visa fler...
Sain, Mohini (13)
Tanpichai, Supachok (13)
Larsson, Sylvia (11)
Jonoobi, Mehdi (11)
Liu, Peng (10)
Karim, Zoheb (10)
Naseri, Narges (10)
Hooshmand, Saleh (8)
Labidi, Jalel (7)
Zhou, Qi (7)
Butylina, Svetlana (7)
Gatenholm, Paul, 195 ... (6)
Noël, Maxime (6)
Yao, Kun (6)
Palmquist, Anders, 1 ... (5)
Akyuz, Lalehan (5)
Kaya, Murat (5)
Ilk, Sedef (5)
Mujtaba, Muhammad (4)
Salaberria, Asier M. (4)
Kokol, Vanja (4)
Johansson, Martin L (4)
Haque, MD Minhaz Ul (4)
Engqvist, Håkan (3)
Neisiany, Rasoul Esm ... (3)
Tengvall, Pentti (3)
Olsson, Lisbeth, 196 ... (3)
Johansson, Eva (3)
Kalen, Gunnar (3)
Mautner, Andreas (3)
Cakmak, Yavuz Selim (3)
Wennerberg, Ann (3)
Andersson, Martin, 1 ... (3)
Grahn, Mattias (3)
Martinez Avila, Hect ... (3)
Mapelli, Valeria, 19 ... (3)
Shah, Furqan A. (3)
Hedhammar, My (3)
Kärki, Timo (3)
Girandon, Lenart (3)
Deepa, B. (3)
Hassan, Mohammad L (3)
Frisk, Nikolina (3)
Harila, Maria (3)
visa färre...
Lärosäte
Luleå tekniska universitet (173)
Kungliga Tekniska Högskolan (31)
Chalmers tekniska högskola (25)
Sveriges Lantbruksuniversitet (22)
Göteborgs universitet (18)
Stockholms universitet (14)
visa fler...
Uppsala universitet (13)
Lunds universitet (11)
RISE (9)
Umeå universitet (4)
Malmö universitet (4)
Mittuniversitetet (3)
Linnéuniversitetet (3)
Högskolan i Borås (3)
Karolinska Institutet (3)
Högskolan i Halmstad (2)
Linköpings universitet (2)
Högskolan i Gävle (1)
Jönköping University (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (279)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Teknik (282)
Naturvetenskap (43)
Medicin och hälsovetenskap (37)
Lantbruksvetenskap (6)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy