SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Industrial Biotechnology) hsv:(Bio Materials) srt2:(2020-2024)"

Sökning: hsv:(ENGINEERING AND TECHNOLOGY) hsv:(Industrial Biotechnology) hsv:(Bio Materials) > (2020-2024)

  • Resultat 1-25 av 191
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svensson, Sofie, et al. (författare)
  • Fungal textiles : Wet spinning of fungal microfibers to produce monofilament yarns
  • 2021
  • Ingår i: Sustainable Materials and Technologies. - : Elsevier BV. - 2214-9937. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell wall of a zygomycetes fungus was successfully wet spun into monofilament yarns and demonstrated as a novel resource for production of sustainable textiles. Furthermore, the fungus could be cultivated on bread waste, an abundant food waste with large negative environmental impact if not further utilized. Rhizopus delemar was first cultivated in bread waste in a bubble column bioreactor. The fungal cell wall collected through alkali treatment of fungal biomass contained 36 and 23% glucosamine and N-acetyl glucosamine representing chitosan and chitin in the cell wall, respectively. The amino groups of chitosan were protonated by utilizing acetic or lactic acid. This resulted in the formation of a uniform hydrogel of fungal microfibers. The obtained hydrogel was wet spun into an ethanol coagulation bath to form an aggregated monofilament, which was finally dried. SEM images confirmed the alignment of fungal microfibers along the monofilament axis. The wet spun monofilaments had tensile strengths up to 69.5 MPa and Young's modulus of 4.97 GPa. This work demonstrates an environmentally benign procedure to fabricate renewable fibers from fungal cell wall cultivated on abundant food waste, which opens a window to creation of sustainable fungal textiles.
  •  
2.
  • Spetea, Cornelia, 1968 (författare)
  • Energy-efficient cultivation of marine microalgae for biomass production : Final rapport: Energimyndigheten P45907-1
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This project has demonstrated the principle of rotational cultivation of marine microalgae and that species adapted to cold climates can provide higher productivity during cold periods. By using marine species, and thus seawater instead of freshwater in cultivation, the environmental impact is reduced. Society faces major challenges to produce sufficient amounts of biomass for energy and material, and microalgae have a great potential to complement sources from forestry and agriculture. At Nordic latitudes year-round microalgae cultivation is debatable due to seasonal variations in productivity. Shall the same species be used throughout the year or shall seasonal-adapted species be used? The aims of the project were to identify suitable algal strains for a potential annual rotation model, where different strains are rotated during three cultivation seasons, and to further develop and optimize an energy-efficient cultivation process for the marine environment. To achieve these aims, a laboratory study was performed where two marine microalgal strains out of 167 were selected for intended cultivation at the west coast of Sweden. One strain belongs to the species Nannochloropsis granulata and the other to Skeletonema marinoi. The strains were cultivated in three simulated growth seasons: summer, winter and spring, and thereafter compared. We show that Nannochloropsis produced more biomass with more incorporated energy in lipids during summer and spring (25 MJ kg-1 compared to about 45 MJ kg-1 for diesel), whereas Skeletonema produced more biomass rich in carbohydrates and proteins during winter. Skeletonema was in general more efficient in taking up phosphate. Based on our results, biomass production as energy feedstock would be energy efficient only during the summer on the Swedish west coast. Nevertheless, species could be rotated for different purposes during the year. Biomass production could be combined with nutrient recycling of wastewater, for example, from fish industry. Our project faces a challenge in boosting the biomass produced in winter, but this could be solved, for example, by optimization of the cultivation medium and temperature increase with heat wastewater or other heat waste. The summer species Nannochloropsis proved to withstand winter by activating different lipid metabolic pathways than the cold-adapted species Skeletonema uses. Enhanced synthesis of proteins, such as enzymes, in Skeletonema during winter may compensate for their reduced activities, promoting growth and biomass production even at low temperatures. More species need to be studied to find those with higher productivity under winter conditions. In practice, the work-related consequences of a rotational cultivation should be weighed against its benefits, relative to a shorter cultivation season in each application. Potential applications mainly include cleaning of air and seawater, production of energy, biomass and biomaterials for the industry.
  •  
3.
  • Gustafsson, Marcus, 1987-, et al. (författare)
  • Climate performance of liquefied biomethane with carbon dioxide utilization or storage
  • 2024
  • Ingår i: Renewable and sustainable energy reviews. - : Elsevier. - 1364-0321 .- 1879-0690. ; 192
  • Tidskriftsartikel (refereegranskat)abstract
    • In the process of upgrading biogas to biomethane for gas grid injection or use as a vehicle fuel, biogenic carbon dioxide (CO₂) is separated and normally emitted to the atmosphere. Meanwhile, there are a number of ways of utilizing CO₂ to reduce the dependency on fossil carbon sources. This article assesses the climate performance of liquefied biomethane for road transport with different options for utilization or storage of CO₂. The analysis is done from a life cycle perspective, covering the required and avoided processes from biogas production to the end use of biomethane and CO₂. The results show that all of the studied options for CO₂ utilization can improve the climate performance of biomethane, in some cases contributing to negative CO₂ emissions. One of the best options, from a climate impact perspective, is to use the CO₂ internally to produce more methane, although continuous supply of hydrogen from renewable sources can be a challenge. Another option that stands out is concrete curing, where CO₂ can both replace conventional steam curing and be stored for a long time in mineral form. Storing CO₂ in geological formations can also lead to negative CO₂ emissions. However, with such long-term storage solutions, opportunities to recycle biogenic CO₂ are lost, together with the possibility of de-fossilizing processes that require carbon, such as chemical production and horticulture.
  •  
4.
  • Magnusson, Mikael, et al. (författare)
  • Bioconversion of food waste to biocompatible wet-laid fungal films
  • 2022
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 216
  • Tidskriftsartikel (refereegranskat)abstract
    • The fungus Rhizopus delemar was grown on bread waste in a submerged cultivation process and wet-laid into films. Alkali or enzyme treatments were used to isolate the fungal cell wall. A heat treatment was also applied to deactivate biological activity of the fungus. Homogenization of fungal biomass was done by an iterative ultrafine grinding process. Finally, the biomass was cast into films by a wet-laid process. Ultrafine grinding resulted in densification of the films. Fungal films showed tensile strengths of up to 18.1 MPa, a Young's modulus of 2.3 GPa and a strain at break of 1.4%. Highest tensile strength was achieved using alkali treatment, with SEM analysis showing a dense and highly organized structure. In contrast, less organized structures were obtained using enzymatic or heat treatments. A cell viability assay and fluorescent staining confirmed the biocompatibility of the films. A promising route for food waste valorization to sustainable fungal wet-laid films was established. © 2022 The Authors
  •  
5.
  • Moaveni, Raouf, et al. (författare)
  • Production of Polymeric Films from Orange and Ginger Waste for Packaging Application and Investigation of Mechanical and Thermal Characteristics of Biofilms
  • 2024
  • Ingår i: Applied Sciences. - 2076-3417. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrus waste has been used as a source of bioplastics for research in different ways. Because the juice industry produces significant amounts of residue each year, it would be advantageous to use the byproducts in the creation of new materials. Researchers have long explored eco-friendly methods to convert citrus and other organic waste into polymers for producing biodegradable films. The goal of this study is to create biofilms from orange waste (OW) and ginger waste (GW) using an ultrafine grinder and study the films’ properties. Since pectin has the ability to gel, and because cellulosic fibers are strong, citrus waste has been studied for its potential to produce biofilms. After being washed, dried, and milled, orange and ginger waste was shaped into films using a casting process. Tensile testing was used to determine the mechanical properties of biofilms, while dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to determine their thermal properties. As the number of grinding cycles increased, the suspension’s viscosity increased from 29 mPa.s to 57 mPa.s for OW and from 217 mPa.s to 376 mPa.s for GW, while the particle size in the suspension significantly decreased. For OW and GW films, the highest tensile strength was 17 MPa and 15 MPa, respectively. The maximum strain obtained among all films was 4.8%. All the tested films were stable up to 150 °C, and maximum degradation occured after 300 °C.
  •  
6.
  • Zhang, Emma, 1985, et al. (författare)
  • Activation of municipal solid waste incineration ashes for green concrete
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:4
  • Konferensbidrag (refereegranskat)abstract
    • Due to the variable characteristics of municipal solid waste incineration (MSWI) ashes and the lack of coherent standards and regulations, a majority of MSWI ashes is landfilled currently. It is an urgent issue that the significant amount of residue MSWI ashes need to be better handled and reused as a renewable source. MSWI ashes have great potential to be utilized as a cementitious replacement material in concrete mixing, which is beneficial for both promoting MSWI ash reuse and reducing cement consumption. However, there are major challenges associated with MSWI ash reuse, including the presence of lack of efficient approach to restore the reactivity of MSWI ashes as a binding agent, because such ashes are usually low in reactivity or even inert. This study aims to develop an effective and reliable activation method to enable the pozzolanic and hydraulic properties of MSWI ashes. A novel activation methodology by means of physiochemical treatments, including particle size reduction and high pH activator was proposed to increase the reactivity of such bottom ashes. A rapid test method, namely solution test, was developed to test the potential reactivity after the activation. Thermogravimetric analysis (TGA) and ion chromatography (IC) were employed to evaluate the degree of reactivity. The results showed that the physicochemical treatment can indeed increase the reactivity of MSWI ashes. Compared to the existing test protocols using normal activator the new solution test can more effectively examine the latent pozzolanic activities of MSWI ashes. The successful application of the proposed activation methodology together with the developed solution test could turn those “inert or low reactivity” to-be-landfilled ashes into an active binding agent as a cement replacement material, which would contribute greatly to recycle and reuse of waste materials and reduce CO2 emission.
  •  
7.
  • Larsson, Karl-Johan, 1985, et al. (författare)
  • Influences of human thorax variability on population rib fracture risk prediction using human body models
  • 2023
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.
  •  
8.
  • Singh, Shikha, et al. (författare)
  • Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties
  • 2021
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.
  •  
9.
  • Parker, Daniela, et al. (författare)
  • Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers
  • 2021
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry. - 2051-6347 .- 2051-6355. ; 8:12, s. 3295-3305
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm(-1) and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.
  •  
10.
  • Raji, Olanrewaju, et al. (författare)
  • The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin–carbohydrate complexes
  • 2021
  • Ingår i: FEBS Letters. - : Wiley. - 1873-3468 .- 0014-5793. ; 595:3, s. 351-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α-glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α-glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α-glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.
  •  
11.
  • Abitbol, Tiffany, et al. (författare)
  • Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
  • 2021
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 260
  • Tidskriftsartikel (refereegranskat)abstract
    • The biotechnological applications of cellulose nanocrystals (CNCs) continue to grow due to their sustainable nature, impressive mechanical, rheological, and emulsifying properties, upscaled production capacity, and compatibility with other materials, such as protein and polysaccharides. In this study, hydrogels from CNCs and pectin, a plant cell wall polysaccharide broadly used in food and pharma, were produced by calcium ion-mediated internal ionotropic gelation (IG). In the absence of pectin, a minimum of 4 wt% CNC was needed to produce self-supporting gels by internal IG, whereas the addition of pectin at 0.5 wt% enabled hydrogel formation at CNC contents as low as 0.5 wt%. Experimental data indicate that CNCs and pectin interact to give robust and self-supporting hydrogels at solid contents below 2.5 %. Potential applications of these gels could be as carriers for controlled release, scaffolds for cell growth, or wherever else distinct and porous network morphologies are required.
  •  
12.
  • Aguilar Sánchez, Andrea, 1987- (författare)
  • Nanopolysaccharide coatings for functional surfaces in water-treatment materials : From mechanisms to process scalability
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, materials from renewable resources were used to develop functionalized surfaces for water treatment. The work is thus inspired by, and contributes to, the United Nations sustainable goals of: (i) clean water and sanitation, (ii) climate action, (iii) responsible consumption and production, (iv) life below water, and (v) partnerships for the goals.Nanopolysaccharides, most specifically nanocellulose and nanochitin, are great candidates for functional and renewable materials for multiple applications, including the treatment of water and wastewater. This thesis focused on the formulation of different types of nanopolysaccharide-based coatings to enhance the performance of commercially available membranes and cellulose fabrics. We developed a simple waterborne layer-by-layer cellulose nanocrystals (CNC) and TEMPO-oxidized cellulose nanofibrils (T-CNF) coating for commercially available membranes. By changing the surface and pore structure of the membrane, the coating tuned which substrates could pass through the membrane, improved antifouling performanced, and when derived from T-CNF, it was harmful to bacterial colonization. Considering the observed T-CNF’s effect on bacteria, we developed a chemically crosslinked T-CNF/Poly(vinyl) alcohol (PVA) coating with outstanding antibiofouling performance, ion adsorption/rejection combined with size exclusion, and with dimensional and pH stability. Furthermore, we used a surface-impregnation approach based on bio-based nanotechnology which resulted in highly efficient, with improved mechanical properties, and fully bio-based high-flux water filtration membranes using commercially available nonwoven fabrics. Membranes with coatings prepared from CNC, chitin nanocrystals (ChNC) and T-CNF separated particles in the size range of bacteria and viruses, and those prepared from also T-CNF showed high microplastic filtration efficiency. Moreover, membrane coating based on ChNC and T-CNF had outstanding antibacterial properties.Overall, we demonstrated that nanopolysaccharide coatings on membranes could provide a significant reduction in organic fouling and biofilm formation while enabling the adsorption of ions and separation of microplastics. In the case of biofilm formation, the functional group and surface charge of the different nanopolysaccharides determined the effect over bacteria, indicating that surfaces could be tailored against microbes. In addition, we directly compared the effect of the different nanopolysaccharides of interest (CNC, T-CNF, ligno-celullose nanocrystals (L-CNC), and ChNC) on bacterial viability and biofilm formation, and found a great difference between the different types of nanocellulose and a different mechanism for nanochitin. Thorough, none of the nanopolysaccharides displayed cytotoxic effects while in indirect contact with the bacterial cells. Nevertheless, T-CNF, ChNC and L-CNC showed a cytostatic effect on bacterial proliferation. Furthermore, the nanomechanical properties of the bacterial cells and interacting forces between the nanopolysaccharides and Escherichia coli (E. coli) were affected when in direct contact with the nanopolysaccharide surfaces.Lastly, we upscaled one of our coating processes, demonstrating that the method could be easily implemented at an industrial level. The impact of this thesis relies on the effectiveness of the coatings, the different types of functionalities observed, the demonstrated fast implementation at an industrial scale, and the potential to extrapolate this technology to other applications.
  •  
13.
  • Alimohammadzadeh, Rana, et al. (författare)
  • Direct Organocatalytic Thioglycolic Acid Esterification of Cellulose Nanocrystals : A simple entry to click chemistry on the surface of nanocellulose
  • 2022
  • Ingår i: Carbohydrate Polymer Technologies and Applications. - : Elsevier BV. - 2666-8939. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The mild and simple direct organocatalytic esterification of cellulose nanocrystals (CNC) and nanocellulose-based materials (e.g. foams and films) with thioglycolic acid (TGA) is disclosed. The transformation gives the corresponding thiol group (-SH) functionalized crystalline nanocellulose (CNC-SH) using simple, naturally occurring, and non-toxic organic acids (e.g. tartaric acid) as catalysts. We also discovered that the direct esterification of cellulose with TGA is autocatalytic (i.e. the TGA is catalyzing its own esterification). The introduction of the -SH functionality at the nanocellulose surface opens up for further selective applications. This was demonstrated by attaching organic catalysts and fluorescent molecules, which are useful as sensors, to the CNC-SH surface by thiol-ene click chemistry. Another application is to use the CNC-SH-based foam as a heterogeneous biomimetic reducing agent, which is stable during multiple recycles, for the copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (“click” reaction).
  •  
14.
  • Alsanius, Beatrix (författare)
  • An updated glossary of terms and basic characteristics of growing media
  • 2023
  • Ingår i: Acta Horticulturae. - 0567-7572 .- 2406-6168. ; 1377, s. 925-934
  • Konferensbidrag (refereegranskat)abstract
    • In the research community of growing media, there is an increasing confusion related to inappropriate use of terms, and to a lack of description of minimal chemical, physical, biological characteristics of growing media and their components for adequate data interpretation in scientific publications. A survey was conducted between the summer of 2019 and the autumn of 2020 among growing media scientists worldwide to help addressing these two issues and published later as a basic framework (Caron and Zheng, 2021). In 2022, a workshop was organized to update terms and definitions and report further progress with respect to terms and basic characteristics. This paper summarizes the improvement of the glossary suggested by Caron and Zheng (2021).
  •  
15.
  • Aminoroaya, Alireza, et al. (författare)
  • A Review of Dental Composites : Methods Of Characterizations
  • 2020
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 6:7, s. 3713-3744
  • Forskningsöversikt (refereegranskat)abstract
    • Dental composites are becoming increasingly popular in esthetic restorative dentistry and present a promising substitute for amalgam. However, the major hurdles that hinder their total adoption in restorative dentistry are limited longevity and possible health risks, leading to significant attempts for addressing these shortcomings. Besides the new materials, the evaluation methods play a critical role in the introduction and improvement of these types of materials. This review aims to cover the characterization methods in the evaluation of dental composites that are most employed nowadays. Therefore, the methods for evaluating the physical properties of the dental composites are first explained. Subsequently, the assessment methods of curing kinetics and the mechanical properties of the composites are classified and reviewed. Afterward, the article delves into the introduction and classification of the microscopic and antibacterial evaluation methods. Finally, the test methods for assessment of in vitro cytotoxicity and self-healing ability are described. It should be noted, for each test method, the most recent and interesting articles are cited. It is envisaged that this review will facilitate an understanding and provide knowledge for the section and utilizing the most effective and suitable characterization methods for future research on the development of dental composites.
  •  
16.
  • Andersson Trojer, Markus, et al. (författare)
  • Elastic strain-hardening and shear-thickening exhibited by thermoreversible physical hydrogels based on poly(alkylene oxide)-grafted hyaluronic acid or carboxymethylcellulose
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 22:26, s. 14579-14590
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.
  •  
17.
  • Antlauf, Mathis, et al. (författare)
  • Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities
  • 2021
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 22:9, s. 3800-3809
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the growing use of cellulose in various applications, knowledge and understanding of its physical properties become increasingly important. Thermal conductivity is a key property, but its variation with porosity and density is unknown, and it is not known if such a variation is affected by fiber size and temperature. Here, we determine the relationships by measurements of the thermal conductivity of cellulose fibers (CFs) and cellulose nanofibers (CNFs) derived from commercial birch pulp as a function of pressure and temperature. The results show that the thermal conductivity varies relatively weakly with density (ρsample = 1340–1560 kg m–3) and that its temperature dependence is independent of density, porosity, and fiber size for temperatures in the range 80–380 K. The universal temperature and density dependencies of the thermal conductivity of a random network of CNFs are described by a third-order polynomial function (SI-units): κCNF = (0.0787 + 2.73 × 10–3·T – 7.6749 × 10–6·T2 + 8.4637 × 10–9·T3)·(ρsample/ρ0)2, where ρ0 = 1340 kg m–3 and κCF = 1.065·κCNF. Despite a relatively high degree of crystallinity, both CF and CNF samples show amorphous-like thermal conductivity, that is, it increases with increasing temperature. This appears to be due to the nano-sized elementary fibrils of cellulose, which explains that the thermal conductivity of CNFs and CFs shows identical behavior and differs by only ca. 6%. The nano-sized fibrils effectively limit the phonon mean free path to a few nanometers for heat conduction across fibers, and it is only significantly longer for highly directed heat conduction along fibers. This feature of cellulose makes it easier to apply in applications that require low thermal conductivity combined with high strength; the weak density dependence of the thermal conductivity is a particularly useful property when the material is subjected to high loads. The results for thermal conductivity also suggest that the crystalline structures of cellulose remain stable up to at least 0.7 GPa.
  •  
18.
  • Arndt, Tina, et al. (författare)
  • Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 32:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers’ mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in β-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high β-strand propensity and can mediate tight inter-β-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger β-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L−1 which is in line with requirements for economically feasible bulk scale production.
  •  
19.
  •  
20.
  • Aronsson, Christopher, et al. (författare)
  • Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting
  • 2020
  • Ingår i: Biofabrication. - : Institute of Physics Publishing (IOPP). - 1758-5082 .- 1758-5090. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogels are used in a wide range of biomedical applications, including three-dimensional (3D) cell culture, cell therapy and bioprinting. To enable processing using advanced additive fabrication techniques and to mimic the dynamic nature of the extracellular matrix (ECM), the properties of the hydrogels must be possible to tailor and change over time with high precision. The design of hydrogels that are both structurally and functionally dynamic, while providing necessary mechanical support is challenging using conventional synthesis techniques. Here, we show a modular and 3D printable hydrogel system that combines a robust but tunable covalent bioorthogonal cross-linking strategy with specific peptide-folding mediated interactions for dynamic modulation of cross-linking and functionalization. The hyaluronan-based hydrogels were covalently cross-linked by strain-promoted alkyne-azide cycloaddition using multi-arm poly(ethylene glycol). In addition, a de novo designed helix-loop-helix peptide was conjugated to the hyaluronan backbone to enable specific peptide-folding modulation of cross-linking density and kinetics, and hydrogel functionality. An array of complementary peptides with different functionalities was developed and used as a toolbox for supramolecular tuning of cell-hydrogel interactions and for controlling enzyme-mediated biomineralization processes. The modular peptide system enabled dynamic modifications of the properties of 3D printed structures, demonstrating a novel route for design of more sophisticated bioinks for four-dimensional bioprinting. © 2020 The Author(s). Published by IOP Publishing Ltd.
  •  
21.
  • Arya, Mina, et al. (författare)
  • Enhancing Sustainability: Jute Fiber-Reinforced Bio-Based Sandwich Composites for Use in Battery Boxes
  • 2023
  • Ingår i: Polymers. - : Multidisciplinary Digital Publishing Institute (MDPI). - 2073-4360. ; 15:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. In this study, the mechanical behavior (tensile, flexural, and interlaminar shear properties) of plasma-treated jute composite laminates and the flexural behavior of jute fabric-reinforced sandwich composites were investigated. Non-woven mat fiber (MFC), jute fiber (JFC), dried jute fiber (DJFC), and plasma-treated jute fiber (TJFC) composite laminates, as well as sandwich composites consisting of jute fabric bio-based unsaturated polyester (UPE) composite as facing material and polyethylene terephthalate (PET70 and PET100) and polyvinyl chloride (PVC) as core materials were fabricated to compare their functional properties. Plasma treatment of jute composite laminate had a positive effect on some of the mechanical properties, which led to an improvement in Young’s modulus (7.17 GPa) and tensile strength (53.61 MPa) of 14% and 8.5%, respectively, as well as, in flexural strength (93.71 MPa) and flexural modulus (5.20 GPa) of 24% and 35%, respectively, compared to those of JFC. In addition, the results demonstrated that the flexural properties of jute sandwich composites can be significantly enhanced by incorporating PET100 foams as core materials. 
  •  
22.
  • Asadollahzadeh, Mohammadtaghi, et al. (författare)
  • Application of Fungal Biomass for the Development of New Polylactic Acid-Based Biocomposites
  • 2022
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungal biomass (FB), a by-product of the fermentation processes produced in large volumes, is a promising biomaterial that can be incorporated into poly(lactic acid) (PLA) to develop enhanced biocomposites that fully comply with the biobased circular economy concept. The PLA/FB composites, with the addition of triethyl citrate (TEC) as a biobased plasticizer, were fabricated by a microcompounder at 150 °C followed by injection molding. The effects of FB (10 and 20 wt %) and TEC (5, 10, and 15 wt %) contents on the mechanical, thermal and surface properties of the biocomposites were analyzed by several techniques. The PLA/FB/TEC composites showed a rough surface in their fracture section. A progressive decrease in tensile strength and Young’s modulus was observed with increasing FB and TEC, while elongation at break and impact strength started to increase. The neat PLA and biocomposite containing 10% FB and 15% TEC exhibited the lowest (3.84%) and highest (224%) elongation at break, respectively. For all blends containing FB, the glass transition, crystallization and melting temperatures were shifted toward lower values compared to the neat PLA. The incorporation of FB to PLA thus offers the possibility to overcome one of the main drawbacks of PLA, which is brittleness.
  •  
23.
  • Aulin, Christian, et al. (författare)
  • Enhanced mechanical and gas barrier performance of plasticized cellulose nanofibril films
  • 2022
  • Ingår i: Nordic Pulp & Paper Research Journal. - : De Gruyter Open Ltd. - 0283-2631 .- 2000-0669. ; 37:1, s. 138-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibrils (CNF) are mixed with plasticizers; sorbitol and glycerol, through high-pressure homogenization to prepare multifunctional biohybrid films. The resulting plasticized films obtained after solvent evaporation are strong, flexible and demonstrate superior toughness and optical transparency. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials. The sorbitol-plasticized CNF films possess excellent oxygen barrier properties, 0.34 cm3·μm/m2·day·kPa at 50 % relative humidity, while significantly enhancing the toughness and fracture strength of the films. CNF films plasticized by 20 wt.% of sorbitol and glycerol could before rupture, be strained to about 9 % and 12 %, respectively. The toughness of the plasticized films increased by ca. 300 % compared to the pristine CNF film. Furthermore, the water vapor barrier properties of the biohybrid films were also preserved by the addition of sorbitol. CNF films plasticized with sorbitol was demonstrated to simultaneously enhance fracture toughness, work of fracture, softening behavior while preserving gas barrier properties. Highly favorable thermomechanical characteristics were found with CNF/sorbitol combinations and motivate further work on this material system, for instance as a thermoformable matrix in biocomposite materials. The unique combination of excellent oxygen barrier behavior, formability and optical transparency suggest the potential of these CNF-based films as an alternative in flexible packaging of oxygen sensitive devices like thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in packaging applications, including free-standing films as aluminium-replacement in liquid board and primary packaging, as replacement for polyethylene (PE) in wrapping paper, e. g. sweats and confectionary.
  •  
24.
  • Baba Ahmadi, Arezou, 1985, et al. (författare)
  • Chloride binding in Portland composite cements containing metakaolin and silica fume
  • 2022
  • Ingår i: Cement and Concrete Research. - : Elsevier BV. - 0008-8846 .- 1873-3948. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates how the composition of Portland composite cements affects their chloride-binding properties. Hydrated cement pastes prepared with a reference Portland cement and composite Portland cements containing metakaolin and/or silica fume were exposed to NaCl or CaCl2 solutions. Chloride-binding isotherms were determined and the hydrate assemblage was investigated using TGA, XRD, 27Al NMR, 29Si NMR and thermodynamic modelling. Compared to the reference Portland cement paste, silica fume replacement did not alter the chloride-binding capacity. The metakaolin replacement resulted in the highest chloride-binding capacity. When combining silica fume with metakaolin, the chloride binding is similar to the reference Portland cement. In this study the differences in chloride binding were linked not only to changes in the AFm content, but also to alterations in the Al-uptake and chain length of the C(-A)-S-H.
  •  
25.
  • Babu, Karthik, et al. (författare)
  • A Review on the Flammability Properties of Carbon-Based Polymeric Composites : State-of-the-Art and Future Trends
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:7
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon based fillers have attracted a great deal of interest in polymer composites because of their ability to beneficially alter properties at low filler concentration, good interfacial bonding with polymer, availability in different forms, etc. The property alteration of polymer composites makes them versatile for applications in various fields, such as constructions, microelectronics, biomedical, and so on. Devastations due to building fire stress the importance of flame-retardant polymer composites, since they are directly related to human life conservation and safety. Thus, in this review, the significance of carbon-based flame-retardants for polymers is introduced. The effects of a wide variety of carbon-based material addition (such as fullerene, CNTs, graphene, graphite, and so on) on reaction-to-fire of the polymer composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites. Additionally, the most widely used flammability measuring techniques for polymeric composites are presented. Finally, the key factors and different methods that are used for property enhancement are concluded and the scope for future work is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 191
Typ av publikation
tidskriftsartikel (158)
forskningsöversikt (12)
bokkapitel (10)
konferensbidrag (5)
doktorsavhandling (5)
konstnärligt arbete (1)
visa fler...
rapport (1)
visa färre...
Typ av innehåll
refereegranskat (174)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Oksman, Kristiina, 1 ... (33)
Das, Oisik (15)
Geng, Shiyu (11)
Berglund, Linn (10)
Hedenqvist, Mikael S ... (10)
Berglund, Lars, 1956 ... (8)
visa fler...
Rising, Anna (7)
Zamani, Akram (7)
Neisiany, Rasoul Esm ... (6)
Das, Atanu Kumar (6)
Hakkarainen, Minna (5)
Jiang, Lin (5)
Liebi, Marianne, 198 ... (5)
Schmuck, Benjamin (5)
Xu, Qiang (5)
Wei, Jiayuan (5)
Abitbol, Tiffany (4)
Tang, Luping, 1956 (4)
Skrifvars, Mikael, 1 ... (4)
Försth, Michael (4)
Chen, Hui (4)
Ramakrishna, Seeram (4)
Greco, Gabriele (4)
George, Gejo (4)
Capezza, Antonio Jos ... (4)
Jonasson, Simon (4)
Barth, Andreas (3)
Johansson, Jan (3)
Mattiasson, Bo (3)
Adolfsson, Karin H. (3)
Johansson, Eva (3)
Isaksson, Hanna (3)
Sandberg, Dick, 1967 ... (3)
Olsson, Richard T. (3)
Sain, Mohini (3)
Eliasson, Pernilla T ... (3)
Mamo, Gashaw (3)
Esmaeely Neisiany, R ... (3)
Hammerman, Malin (3)
Zhou, Qi (3)
Vilaseca, Fabiola (3)
Pugno, Nicola M. (3)
Pierantoni, Maria (3)
Guizar-Sicairos, Man ... (3)
Diaz, Ana (3)
Islam, Md Nazrul (3)
Silva Barreto, Isabe ... (3)
Simões dos Reis, Gla ... (3)
Pakharenko, Viktoriy ... (3)
Schwendemann, Daniel (3)
visa färre...
Lärosäte
Luleå tekniska universitet (61)
Kungliga Tekniska Högskolan (58)
Sveriges Lantbruksuniversitet (31)
Chalmers tekniska högskola (28)
RISE (19)
Lunds universitet (11)
visa fler...
Högskolan i Borås (11)
Linköpings universitet (9)
Karolinska Institutet (7)
Stockholms universitet (6)
Göteborgs universitet (5)
Uppsala universitet (3)
Umeå universitet (2)
Örebro universitet (2)
Högskolan i Skövde (2)
Karlstads universitet (2)
Mittuniversitetet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (191)
Forskningsämne (UKÄ/SCB)
Teknik (191)
Naturvetenskap (45)
Medicin och hälsovetenskap (14)
Lantbruksvetenskap (9)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy