SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Birnsteinova Sarlota) "

Sökning: WFRF:(Birnsteinova Sarlota)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asimakopoulou, Eleni Myrto, et al. (författare)
  • Development towards high-resolution kHz-speed rotation-free volumetric imaging
  • 2024
  • Ingår i: Optics Express. - 1094-4087. ; 32:3, s. 4413-4426
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray multi-projection imaging (XMPI) has the potential to provide rotation-free 3D movies of optically opaque samples. The absence of rotation enables superior imaging speed and preserves fragile sample dynamics by avoiding the centrifugal forces introduced by conventional rotary tomography. Here, we present our XMPI observations at the ID19 beamline (ESRF, France) of 3D dynamics in melted aluminum with 1000 frames per second and 8 µm resolution per projection using the full dynamical range of our detectors. Since XMPI is a method under development, we also provide different tests for the instrumentation of up to 3000 frames per second. As the high-brilliance of 4th generation light-sources becomes more available, XMPI is a promising technique for current and future X-ray imaging instruments.
  •  
2.
  • Bellucci, Valerio, et al. (författare)
  • Hard X-ray stereographic microscopy for single-shot differential phase imaging
  • 2023
  • Ingår i: Optics Express. - 1094-4087. ; 31:11, s. 18399-18406
  • Tidskriftsartikel (refereegranskat)abstract
    • The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second.
  •  
3.
  • Birnsteinova, Sarlota, et al. (författare)
  • Online dynamic flat-field correction for MHz microscopy data at European XFEL
  • 2023
  • Ingår i: Journal of Synchrotron Radiation. - 1600-5775. ; 30:6, s. 1030-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • The high pulse intensity and repetition rate of the European X-ray Free-Electron Laser (EuXFEL) provide superior temporal resolution compared with other X-ray sources. In combination with MHz X-ray microscopy techniques, it offers a unique opportunity to achieve superior contrast and spatial resolution in applications demanding high temporal resolution. In both live visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of X-ray free-electron laser sources hinders the use of standard flat-field normalization methods during MHz X-ray microscopy experiments. Here, an online (i.e. near real-time) dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images is presented. The method is used for the normalization of individual X-ray projections and has been implemented as a near real-time analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.
  •  
4.
  • Buakor, Khachiwan, et al. (författare)
  • Shot-to-shot flat-field correction at X-ray free-electron lasers
  • 2022
  • Ingår i: Optics Express. - 1094-4087. ; 30:7, s. 10633-10644
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) provide high-brilliance pulses, which offer unique opportunities for coherent X-ray imaging techniques, such as in-line holography. One of the fundamental steps to process in-line holographic data is flat-field correction, which mitigates imaging artifacts and, in turn, enables phase reconstructions. However, conventional flat-field correction approaches cannot correct single XFEL pulses due to the stochastic nature of the self-amplified spontaneous emission (SASE), the mechanism responsible for the high brilliance of XFELs. Here, we demonstrate on simulated and megahertz imaging data, measured at the European XFEL, the possibility of overcoming such a limitation by using two different methods based on principal component analysis and deep learning. These methods retrieve flat-field corrected images from individual frames by separating the sample and flat-field signal contributions; thus, enabling advanced phase-retrieval reconstructions. We anticipate that the proposed methods can be implemented in a real-time processing pipeline, which will enable online data analysis and phase reconstructions of coherent full-field imaging techniques such as in-line holography at XFELs.
  •  
5.
  • Reuter, Fabian, et al. (författare)
  • Laser-induced, single droplet fragmentation dynamics revealed through megahertz x-ray microscopy
  • 2023
  • Ingår i: Physics of Fluids. - 1070-6631. ; 35:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The fragmentation dynamics of single water droplets from laser irradiation is studied with megahertz frame rate x-ray microscopy. Owed to the nearly refraction-free and penetrating imaging technique, we could look into the interior of the droplet and reveal that two mechanisms are responsible for the initial explosive fragmentation of the droplet. First, reflection and diffraction of the laser beam at the droplet interface result in the formation of laser ray caustics that lead to non-homogeneous heating of the droplet, locally above the critical temperature. Second, homogeneous cavitation in the droplet that is likely caused from shockwaves reflected as tension waves at the acoustic soft boundaries of the droplet. Further atomization occurs in three stages, first a fine sub-micrometer sized mist forms on the side of the droplet posterior to laser incidence, then micrometer sized droplets are expelled from the rim of an expanding liquid sheet, and finally into droplets of larger size through hole and ligament formation in the thinning liquid sheet where ligaments pinch off.
  •  
6.
  • Soyama, Hitoshi, et al. (författare)
  • Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging
  • 2023
  • Ingår i: Ultrasonics Sonochemistry. - 1350-4177. ; 101
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
  •  
7.
  • Villanueva Perez, Pablo, et al. (författare)
  • Megahertz X-ray Multi-projection imaging
  • 2023
  • Ingår i: arXiv.org. - 2331-8422.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • X-ray time-resolved tomography is one of the most popular X-raytechniques to probe dynamics in three dimensions (3D). Recent developments in time-resolved tomography opened the possibility of recordingkilohertz-rate 3D movies. However, tomography requires rotating thesample with respect to the X-ray beam, which prevents characterization of faster structural dynamics. Here, we present megahertz (MHz)X-ray multi-projection imaging (MHz-XMPI), a technique capable ofrecording volumetric information at MHz rates and micrometer resolution without scanning the sample. We achieved this by harnessing theunique megahertz pulse structure and intensity of the European X-rayFree-electron Laser with a combination of novel detection and reconstruction approaches that do not require sample rotations. Our approachenables generating multiple X-ray probes that simultaneously record several angular projections for each pulse in the megahertz pulse burst.We provide a proof-of-concept demonstration of the MHz-XMPI technique’s capability to probe 4D (3D+time) information on stochasticphenomena and non-reproducible processes three orders of magnitudefaster than state-of-the-art time-resolved X-ray tomography, by generating 3D movies of binary droplet collisions. We anticipate that MHz-XMPIwill enable in-situ and operando studies that were impossible before,either due to the lack of temporal resolution or because the systemswere opaque (such as for MHz imaging based on optical microscopy).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy